

This document describes $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{E}$. It explains how to get $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{E}$ up and running and which features $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ offers to you. Since $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{X}$ provides a testbed for experimentation the focus has been put on the default configurations. The intended audience for this document are end users of the typesetting engine who want to use $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ on the command line or as plug-in replacement of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$.
(C) 2005 The $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{EX}$ Group and individual authors listed below

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation. A copy of the license is included in the section entitled "GNU Free Documentation License".

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Gerd Neugebauer
Im Lerchelsböhl 5
64521 Groß-Gerau (Germany)
gene@gerd-neugebauer.de

Contents

1. Introduction 5
1.1. This Document 5
1.2. Web Site 5
1.3. Mailing Lists 5
1.4. Reporting Bugs 5
2. Getting Started 7
2.1. Prerequisites 7
2.1.1. Java 7
2.1.2. TEXMF 7
2.2. Getting $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ 8
2.2.1. Getting the Installer 8
2.2.2. Getting the Sources 8
2.3. Installing $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ 9
2.3.1. Installing $\varepsilon_{\chi} \mathrm{T} \mathrm{T}_{\mathrm{E}}$ with the Installer 9
2.3.2. Replaying an Installation 10
2.3.3. Creating the $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ Installer 10
2.3.4. Installing $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ from the Sources on the Command Line 11
2.4. Configuring $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ 11
2.4.1. Start-up Files 11
2.4.2. Configuration Files 16
2.4.3. Predefined Configurations 16
2.4.4. Primitive Sets 17
2.5. Running $\varepsilon_{\chi} \mathrm{T} \mathrm{T}$ 20
2.5.1. Command Line Parameters 21
2.5.2. Creating Formats 24
3. Troubleshooting $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ 25
3.1. Why are my files not found? 25
3.2. Why are is the log file different from $\mathrm{T}_{\mathrm{E} X}$'s? 25
4. The Macro Language of $\varepsilon_{\chi} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ 27
4.1. Basic Syntactic Entities of $\varepsilon_{\mathcal{X}} \mathrm{T} X$ 27
4.2. Primitives of $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ 29
A. Licenses 157
A.1. GNU Free Documentation License 157
A.2. GNU Library General Public License 159
A.3. The License for Avalon 161
A.4. ICU4J license - ICU4J 1.3.1 and later 162
A.5. License for PDFBox 162

1. Introduction

$\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ aims at providing a high-quality typesetting system. The development of $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ has been inspired by the experiences with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. The focus lies on an open design and a high degree of configurability. Thus $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{EX}$ should be a good base for further development.

On the other hand we have to take care not to leave the current user base of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ behind. pdfTEX has taught us that a migration path from $T_{E} X$ has a positive value in it. In the mean time the majority of $\mathrm{T}_{\mathrm{E}} \mathrm{u}$ users applies in fact pdf $\mathrm{T}_{\mathrm{E}} \mathrm{X}$.

To provide a backward compatibility of $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ one special configuration is provided. Thus backward compatibility is just a matter of configuration.

1.1. This Document

This document is meant to be a reference document. It should contain all information necessary to know. It is not meant to be a tutorial. Thus do not expect tutorial type material in this document.

1.2. Web Site

There is a web site devoted to $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$. This web site can be reached via the URL

```
http://www.extex.org
```


1.3. Mailing Lists

If you are ready to try $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ you might as well want to join a mailing list to get in contact with the community.
http://www.dante.de/listman/extex

1.4. Reporting Bugs

If you find any bugs in $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ you can submit them either via a HTML form or via email. You can find the HTML form at
http://www.extex.org/bugs

1. Introduction

Emails containing the description can be sent to
extex-bugs@dante.de
Please include in your description

- the source of a minimal example showing the problem
- the \log file resulting from running this example
- a description why you think that something went wrong and what the expected result would be
- a description of the environment you are using (host architecture, operating system, Java version)

2. Getting Started

In this chapter we describe the steps you can take to get $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{X}$ up and running. We try to use as few as possible premises. Thus it should be not too hard to get started.

2.1. Prerequisites

2.1.1. Java

You need to have Java 1.4.2 or later installed on your system. You can get Java for a several systems directly from java.sun.com. Download and install it according to the installation instructions for your environment.

To check that you have an appropriate Java on your path you can use the command java with the argument -version. This can be seen in the following listing:

```
# java -version
java version "1.4.2_06"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_06-b03)
Java HotSpot(TM) Client VM (build 1.4.2_06-b03, mixed mode)
#
```


2.1.2. TEXMF

If you want to use more than the pure $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ engine, fonts and macros can be inherited from a texmf tree. $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ itself does not contain a full texmf tree. It comes just with some rudimentary files necessary for testing. Thus you should have installed a texmf tree, e.g. from a $T_{E} X L i v e$ installation. This can be found on the Comprehensive $T_{E} X$ Archive Network (CTAN).

There is no need to install the texmf tree in a special place. You have to tell $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ anyhow where it can be found. It is even possible to work with several texmf trees.

One requirement for the texmf trees is that they have a file database ($1 s-R$). $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ can be configured to work without it, but then $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{X}$ is deadly slow. Thus you do not really want to try this alternative.

2.2. Getting $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$

2.2.1. Getting the Installer

The simplest way to get $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ up and running is to use the $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ installer. This installer is distributed as one file ExTeX-setup.jar. You can download it from

```
http://www.extex.org/download/
```

To be completed.

2.2.2. Getting the Sources

The sources of $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ are stored in a CVS repository. To access this repository you need access to the internet and CVS installed in some way.

The coordinates of the repository are:

Connection type:	pserver
User:	anonymous
Host:	cvs.extex.berlios.de
Location:	/cvsroot/extex
Module:	ExTeX

We assume here that you have access to CVS on the command line. This can be either a shell on a Unix-like system or something like cygwin on Windows. We also assume that you have direct connection to the internet.

First we create a directory where the sources are stored:

```
# mkdir ExTeX
```

Next we change the current directory to this base directory:

```
# cd ExTeX
```

Now we log into the CVS repository. This login uses an anonymous account. This enables us to download the sources but not to commit any changes. The committing is restricted to members of the $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ team.

```
# cvs -d:pserver:anonymous@cvs.extex.berlios.de/cvsroot/extex login
```

Finally we can check out the sources:

```
# cvs -d:pserver:anonymous@cvs.extex.berlios.de/cvsroot/extex co ExTeX
```

This command shows a lot of output. At the end the current directory is filled with a lot of files and directories.

Figure 2.1.: The Language Selection in the Installer

2.3. Installing $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$

There are several ways to install $\varepsilon_{\mathcal{X}} \mathrm{T} X$. Some of them are described in this section.

2.3.1. Installing $\varepsilon_{\chi} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ with the Installer

The easiest installation of $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ works with the $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ installer. This installer is named ExTeX-setup.jar. You can start the installer with the following command line:

```
# java -jar ExTeX-setup.jar
```

On Windows with a properly installed Java you can also start the installer by doubleclicking ExTeX-setup.jar in the Explorer.

The installer provides a graphical user interface with a wizard guiding you through the installation process. The first dialog is shown in figure 2.1. As you can see you can select one of several languages for the installation process. Currently the languages English and German are supported. There might be some more at the time you are performing the installation.

Note that the internationalization covers the installer only. $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{EX}$ can be run under different language environments as well. This is controlled by a setting at run-time. Currently only an English language binding for $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is provided.

Finally you have to make sure that the executables extex or extex.bat is on your path for executables.

Figure 2.2.: Generating a Auto-Configuration for the Installer

2.3.2. Replaying an Installation

Sometimes it is desirable to perform an installation on several similar machines. This means that the answers to the questions in the installer are the same. This process can be automated.

In figure 2.2 you can see the last screen of the installer. Here you have the possibility to select the button "Generate an automatic installation script". This produces an XML file which can be passed to the installer to avoid the dialogs.

Suppose you have named the file replay.xml in the file selector which pops up when the button has been pressed. Then you can replay the installation with the following command invocation:

```
# java -jar ExTeX-setup.jar replay.xml
```

This supposes that the two files ExTeX-setup.jar and replay.xml are in the current directory.

Finally you have to make sure that the executables extex or extex.bat is on your path for executables.

2.3.3. Creating the $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ Installer

You can create the installer of $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ from the sources. All you need for this step is contained in the source distribution. Suppose you are in the base directory of the distribution. Then the following command creates the installer:

```
# build installer
```

As a result the file ExTeX-setup.jar is created in the directory target. This file is a self-contained installer. You can immediately start the installer with the following command line:

```
# java -jar target/ExTeX-setup.jar
```

In addition the installer file can be moved to any other place - even other machines and run the installation there (see also section 2.3.1).

2.3.4. Installing $\varepsilon_{\chi} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ from the Sources on the Command Line

To install you can use the build script provided in the $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ base directory.

```
# build -Dinstall.dir=/usr/local/share/ExTeX install
```

Additionally you have to copy the file .extex from the base directory of the $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{EX}$ to your home directory and adapted to your installation. Most probably the value of the property extex.texinputs needs adaptation to point to your texmf trees.

Finally you have to make sure that the executables extex or extex.bat is on your path for executables.
Now you can forget the source directory. It is not needed any more unless you are debugging or developing $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{EX}$ extensions.

2.4. Configuring $\varepsilon_{\chi} \mathrm{T}_{\mathrm{E}} \mathrm{X}$

The behaviour of $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ can be influenced via command line arguments and configuration files. Most of the times the start-up files will be enough for the casual user.

2.4.1. Start-up Files

Whenever $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ starts it looks for start-up files named .extex. This file is sought in the user's home directory in the current directory. The settings in the current directory overwrite the settings from the user's home directory. Those in turn overwrite the builtin settings.
$\varepsilon_{\mathcal{X}}$ TEX user properties files contain setting of properties. This is done in a line-based way. Lines containing only white space characters are ignored. If the first character is a hash sign (\#) then the line is treated as a comment and ignored.

The first appearance of a equal sign (=) or the colon (:) separates the name of the property from the value. Leading and trailing white space is ignored both for the name and the value of the property.

Some characters have a special meaning. The backslash (\backslash) acts as an escape character. The sequence $\backslash \mathrm{n}$ is replaced by the newline character. If the last character in a line is a backslash then the line is continued in the next line. To produce a single backslash it has to be doubled.

2. Getting Started

You can set any property name you like to a legal value. $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ will not complain about unknown properties but ignore them silently. The following properties are used by $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$:
extex.code
This parameter contains $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ code to be executed directly. The execution is performed after any code specified in an input file.
Example:

```
extex.code = \\relax
```

extex.color.converter
This parameter contains the logical name of the color converter to use. The color converter describes how colors are converted between different color soaces. Currently at least the color spaces RGB, Grayscale, HSV, and CMYK are supported. The configuration mapps this to a concrete instance.
Example:

```
extex.color.converter = basic
```

extex.config
This parameter contains the name of the configuration resource to use. This configuration resource is sought on the class path.
Example:

```
extex.config = tex.xml
```

extex.encoding
This parameter contains the name of the property for the standard encoding to use.
Example:

```
extex.encoding = ISO-8859-1
```

extex.error.handler
This parameter contains the logical name of the error handler.
Example:

```
extex.error.handler = TeX
```

extex.fonts
This parameter contains the property indicating where to find font files. The value is a path similar to extex.texinputs.
Example:

```
extex.fonts = /usr/local/share/fonts
```

extex.halt.on.error
This boolean parameter contains the property indicating whether the processing
should stop after the first error. Allowed values are true and false.

Example:

```
extex.halt.on.error = false
```

extex.file
This parameter contains the file to read from. It has no default. If this property is not set or set to the empty string then no attempt is made to read a file. Maybe the user is asked to provide one.
Example:

```
extex.file = abc.tex
```

extex.fmt

This parameter contains the name of the format to read. An empty string denotes that no format should be read. This is the default. In this case $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ acts with no macros or fonts preloaded.

Example:

```
extex.fmt = plain
```


extex.ini

If set to true then act as iniTEX. This command line option is defined for compatibility to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ only. In $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ it has no effect at all. Allowed values are true and false.
Example:

```
extex.ini = true
```

extex.interaction
This parameter contains the interaction mode. Possible values are the numbers $0 \ldots 3$ and the symbolic names batchmode (0), nonstopmode (1), scrollmode (2), and errorstopmode (3).

Example:

```
extex.interaction = scrollmode
```


2. Getting Started

extex.jobname
This parameter contains the name of the job. It is overwritten if a file is given to read from. In this case the basename of the input file is used instead. If no file is read in then the default value texput is used.
Example:

```
extex.jobname = texput
```

extex.jobname.master
This parameter contains the name of the job to be used with high priority.
Example:

```
extex.jobname.master = texput
```

extex.lang
This parameter contains the name of the locale to be used for the messages. The value is a two letter ISO language code. $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ can be internationalized just by providing some files with the translated strings. Currently only the language English (en) is supported.

Example:

```
extex.lang = en
```

extex.nobanner
This parameter contains a boolean indicating that the banner should be suppressed. Allowed values are true and false.
Example:

```
extex.nobanner = false
```

extex.output
This parameter contains the output format. This logical name is resolved via the configuration.

Example:

```
extex.output = pdf
```

extex.outputdir
This parameter contains the directory where output files should be created. The period is interpreted as the current directory. The default is the current directory.
Example:

```
extex.outputdir = .
```

extex.outputdir.fallback
This parameter contains the property for the fallback if the output directory (extex.outputdir) fails to be writable. The period is interpreted as the current directory.
The default is the current directory. Thus you can reset extex.outputdir and if this directory happens not to be writable then the current directory is used to create the log file and output files in.

Example:

```
extex.outputdir.fallback = .
```

extex.progname
This parameter can be used to overrule the name of the program shown in the banner and the version information.

Example:

```
extex.progname = iniExTeX
```

extex.stacktrace.on.internal.error
This parameter can be used to force a stack trace on stdout if an internal error is encountered. This is handy for development. Allowed values are true and false.

Example:

```
extex.stacktrace.on.internal.error = true
```


extex.texinputs

This parameter contains the additional directories for searching $\varepsilon_{\mathcal{X}} \mathrm{TEX}$ input files. The directories are separated by the system-dependant separator. This separator is a colon (:) on Unix and the semicolon (;) on Windows.
Example:

```
extex.texinputs = /home/gene/lib/tex
```

extex.trace.input.files
This boolean parameter contains the indicator whether or not to trace the search for input files. Allowed values are true and false.
Example:

```
extex.trace.input.files = false
```

```
extex.trace.font.files
```

This boolean parameter contains the indicator whether or not to trace the search for font files. Allowed values are true and false.
Example:
2. Getting Started

```
extex.trace.font.files = false
```

extex.trace.macros
This boolean parameter contains the indicator whether or not to trace the execution of macros. Allowed values are true and false.

Example:

```
extex.trace.macros = false
```

extex.trace.tokenizer
This boolean parameter contains the indicator whether or not to trace the work of the tokenizer. Allowed values are true and false.

Example:

```
extex.trace.tokenizer = false
```

extex.typesetter
This parameter contains the name of the typesetter to use. If it is not set then the default from the configuration file is used.

Example:

```
extex.typesetter = default
```


2.4.2. Configuration Files

Configuration files of another kind contain the assembly instructions for $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$. Those files can be used to provide additional features in $\varepsilon_{\mathcal{X}} \mathrm{TEX}$.

To be completed.

2.4.3. Predefined Configurations

The Configuration extex

The configuration extex identifies itself as "ExTeX mode". The configuration contains the primitive sets tex, etex, and omega. The configuration allows extended register names.

The Configuration extex-jx

The configuration extex-jx identifies itself as "Java extensions". The configuration contains the primitive sets tex, etex, and $j x$. The configuration allows extended register names.

The Configuration extex-native

The configuration extex-native identifies itself as "Native extensions". The configuration contains the primitive sets tex, etex, and native. The configuration allows extended register names.

The Configuration nextex

The configuration nextex identifies itself as "Namespace extension". The configuration contains the primitive sets tex, etex, and namespace. The configuration allows extended register names.

The Configuration omega

The configuration omega identifies itself as "Omega compatibility mode". The configuration contains the primitive sets tex, etex, and omega.

The Configuration pdftex

The configuration pdftex identifies itself as "pdfTeX compatibility mode". The configuration contains the primitive sets tex and pdftex.

The Configuration tex

The configuration tex identifies itself as "TeX compatibility mode". The configuration contains the primitive set tex.

2.4.4. Primitive Sets

The Primitive Set etex

The primitive set etex defines the following primitives:

```
\beginL \beginR \botmarks \clubpenalties \currentgrouplevel
\currentgrouptype \currentifbranch \currentiflevel \currentiftype
\detokenize \dimenexpr \displaywidowpenalties \endL \endR \eTeXrevision
\eTeXversion \everyeof \firstmarks \fontchardp \fontcharht \fontcharic
\fontcharwd \glueexpr \glueshrink \glueshrinkorder \gluestretch
\gluestretchorder \ifcsname \ifdefined \iffontchar \interactionmode
\interlinepenalties \lastlinefit \lastnodetype \marks \middle \muexpr
\numexpr \pagediscarts \parshapedimen \parshapeindent \parshapelength
```


2. Getting Started

\predisplaydirection \protected \readline \savinghyphcodes \savingvdiscarts \scantokens \showgroups \showtokens \splitbotmarks \splitdiscarts \splitfirstmarks \TeXXeTstate \topmarks \tracingassigns
\tracingcommands \tracinggroups \tracingifs \tracingnesting
\tracingscantokens \unexpanded \unless \widowpenalties

The Primitive Set jx

The primitive set jx defines the following primitives:
\javadef \javaload

The Primitive Set namespace

The primitive set namespace defines the following primitives:
\export \import \namespace

The Primitive Set native

The primitive set native defines the following primitives:
\nativedef \nativeload

The Primitive Set omega

The primitive set omega defines the following primitives:

```
\addafterocplist \addbeforeocplist \clearocplists \DefaultInputMode
\DefaultInputTranslation \DefaultOutputMode \DefaultOutputTranslation
\hfi \InputMode \InputTranslation \localbrokenpenalty
\localinterlinepenalty \localleftbox \localrightbox \mathdir
\naturaldir \noDefaultInputMode \noDefaultInputTranslation
\noDefaultOutputMode \noDefaultOutputTranslation \nullocplist \ocp
\ocplist \odelmiter \omathaccent \omathchar \omathchardef \omathcode
\omathdelcode \oradical \OutputMode \OutputTranslation \pagedir
\pagedirHL \pagedirHR \popocplist \pushocplist \removebeforeocplist
\textdir \unnaturaldir \vfi
```


The Primitive Set pdftex

The primitive set pdftex defines the following primitives:
\efcode \font \pdfadjustspacing \pdfannot \pdfannotlink \pdfannottext $\backslash p d f c a t a l o g \backslash p d f c o m p r e s s l e v e l ~ \ p d f d e c i m a l d i g i t s ~ \ p d f d e s t ~ \ p d f e n d l i n k ~$ \pdfendthread \pdffontname \pdffontobjnum \pdfhorigin \pdfimage \pdfimageresolution \pdfincludechars \pdfinfo \pdflastannot $\backslash p d f l a s t o b j \backslash p d f l a s t x f o r m \backslash p d f l a s t x i m a g e ~ \ p d f l i n k m a r g i n ~ \ p d f l i t e r a l$

\pdfmovechars \pdfnames \pdfobj \pdfoutline \pdfoutput \pdfpageattr $\backslash p d f p a g e h e i g h t ~ \ p d f p a g e s a t t r \backslash p d f p a g e w i d t h ~ \ p d f p k r e s o l u t i o n$ $\backslash p d f r e f o b j \backslash p d f r e f x f o r m ~ \ p d f r e f x i m a g e ~ \ p d f s t a r t l i n k ~ \ p d f t e x r e v i s i o n ~$ \pdftexversion \pdfthread \pdfthreadhoffset \pdfthreadmargin $\backslash p d f t h r e a d v o f f s e t ~ \ p d f v o r i g i n \backslash p d f x f o r m \ p d f x i m a g e$

The Primitive Set tex

The primitive set tex defines the following primitives:

2. Getting Started

```
\(\backslash r a i s e \backslash r e a d ~ \backslash r e l a x ~ \ r e l p e n a l t y ~ \ r i g h t ~ \ r i g h t h y p h e n m i n ~ \ r i g h t s k i p ~\)
\romannumeral \scriptfont \scriptscriptfont \scriptscriptstyle
\scriptspace \scriptstyle \scrollmode \setbox \setlanguage \sfcode
\shipout \show \showbox \showboxbreadth \showboxdepth \showlists
\showthe \skewchar \skip \skipdef \spacefactor \spaceskip \span
\special \splitbotmark \splitfirstmark \splitmaxdepth \splittopskip
\string \tabskip \textfont \textstyle \the \thickmuskip \thinmuskip
\time \toks \toksdef \tolerance \topmark \topskip \tracingcommands
\tracinglostchars \tracingmacros \tracingonline \tracingoutput
\tracingpages \tracingparagraphs \tracingrestores \tracingstats
\uccode \uchyph \underline \unhbox \unhcopy \unkern \unpenalty \unskip
\unvbox \unvcopy \uppercase \vadjust \valign \vbadness \vbox \vcenter
\vfil \vfill \vfilneg \vfuzz \voffset \vrule \vsize \vskip \vsplit \vss
\vtop \wd \widowpenalty \write \xdef \xleaders \xspaceskip \year
```


2.5. Running $\varepsilon_{X} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$

Currently $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ can be run from the command line. In this respect it is more or less identical to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and can be used as a plug-in replacement.

The following sample show a simple invocation of $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ without any command line arguments.

```
# extex
This is ExTeX, Version 0.0 (TeX compatibility mode)
**\relax
*\end
No pages of output.
Transcript written on ./texput.log.
```

In this case $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ enters interaction with the user and asks for an input file. This is indicated by the two asterisks. We have entered \relax here to indicate that we are not willing to pass in a file name. The $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{X}$ system asks us to enter some command indicted by the single asterisk. Here we have entered \end to indicate that we want to finish the processing. Thus $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{EX}$ terminates normally.

To be completed.

```
# extex plain
This is ExTeX, Version 0.0 (TeX compatibility mode)
(plain Preloading the plain format: codes, registers, parameters, fonts,
```

```
more fonts, macros, math definitions, output routines, hyphenation(hyphen))
*\dump
Beginning to dump on file plain.fmt
*\end
No pages of output.
Transcript written on ./plain.log.
```


2．5．1．Command Line Parameters

The invocation of the executable extex can be controlled by large number of command line arguments．Those command line arguments are described in the following list：

〈code〉
This parameter contains $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{X}$ code to be executed directly．The execution is performed after any code specified in an input file．On the command line the code has to start with a backslash．This restriction does not hold for the property settings．
This command line argument sets the property extex．code
\langle file〉
This parameter contains the file to read from．A file name may not start with a backslash or an ambercent．It has no default．

This command line argument sets the property extex．file．
－〈file〉
This parameter terminates the normal processing of arguments．The next argu－ ment－if present－is interpreted as input file．With this construction it is possible to process an input file which starts with one of the special characters \backslash or \＆
This command line argument sets the property extex．file if a file argument is present．
－configuration 〈resource〉
This parameter contains the name of the configuration resource to use．This con－ figuration resource is sought on the class path．

This command line argument sets the property extex．config．
－copyright
This command line option produces a copyright notice on the standard output stream and terminates the program afterwards．
\＆\langle format \rangle

2．Getting Started

－fmt 〈format〉
This parameter contains the name of the format to read．An empty string denotes that no format should be read．This is the default．

This command line argument sets the property extex．fmt．
－debug 〈spec〉
This command line parameter can be used to instruct the program to produce debugging output of several kinds．The debug output is written to the \log file． The specification $\langle s p e c\rangle$ is interpreted left to right．Each character is interpreted according to the following table：

Spec	Description	See
F	This specifier contains the indicator whether or not to trace the search－ ing for input files．	extex．trace．input．files
f	This specifier contains the indicator whether or not to trace the search－ ing for font files．	extex．trace．font．files
M	This specifier contains the indicator whether or not to trace the execu－	extex．trace．macros
T	tion of macros．	
	This specifier contains the indicator whether or not to trace the work of the tokenizer．	extex．trace．tokenizer

The following example shows a possible invocation with this parameter：

```
# extex -debug FfMT abc.tex
This is ExTeX, Version 0.0 (TeX compatibility mode)
```

```
-halt-on-error
```

This parameter contains the indicator whether the processing should halt after the first error which has been encountered．

This command line argument sets the property extex．halt．on．error．
－help
This command line option produces a short usage description on the standard output stream and terminates the program afterwards．
－ini
If set to true then act as ini $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ ．This command line option is defined for compat－ ibility to $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ only．In $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ it has no effect at all．
This command line argument sets the property extex．ini．
The following example shows a possible invocation with this parameter：

```
# extex -ini abc.tex
This is ExTeX, Version 0.0 (TeX compatibility mode)
```

-interaction $\langle m o d e\rangle$

This parameter contains the interaction mode．possible values are the numbers $0 \ldots 3$ and the symbolic names batchmode（0），nonstopmode（1），scrollmode（2）， and errorstopmode（3）．
This command line argument sets the property extex．interaction．
The following example shows a possible invocation with this parameter：

```
# extex -interaction batchmode abc.tex
This is ExTeX, Version 0.0 (TeX compatibility mode)
...
```

－job－name 〈name〉
This parameter contains the name of the job．It is overwritten if a file is given to read from．In this case the base name of the input file is used instead．

This command line argument sets the property extex．jobname．
－language 〈language〉
This parameter contains the name of the locale to be used for the messages．
This command line argument sets the property extex．lang．
－output 〈format〉
This parameter contains the output format．This logical name is resolved via the configuration．
This command line argument sets the property extex．output．
The following example shows a possible invocation with this parameter：

```
# extex -output pdf abc.tex
This is ExTeX, Version 0.0 (TeX compatibility mode)
```

－progname 〈name〉
This parameter can be used to overrule the name of the program shown in the banner and the version information．The following example shows a possible in－ vocation and the resulting output：

```
# extex -progname XeTxE -version
This is XeTxE, Version 0.0 (1.4.2_06)
#
```

This command line argument sets the property extex．progname．
-texinputs $\langle p a t h\rangle$
This parameter contains the additional directories for searching $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ input files. The directories are separated by the system-dependant separator. This separator is a colon (:) on Unix and the semicolon (;) on Windows.
This command line argument sets the property extex.texinputs.
-texmfoutputs \langle dir〉
This parameter contains the name of the property for the fallback if the output directory fails to be writable.

This command line argument sets the property extex.outputdir.fallback.
-texoutputs $\langle d i r\rangle$
This parameter contain the directory where output files should be created.
This command line argument sets the property extex.outputdir.
-version
This command line parameter forces that the version information is written to standard output and the program is terminated. The version of $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{X}$ is shown and the version of the Java engine in parentheses. The following example shows a possible invocation and the resulting output:

```
# extex -version
This is ExTeX, Version 0.0 (1.4.2_06)
#
```

Command line parameters can be abbreviated up to a unique prefix - and sometimes even more. Thus the following invocations are equivalent:

```
extex -v
extex -ve
extex -ver
extex -vers
extex -versi
extex -versio
extex -version
```


2.5.2. Creating Formats

To be completed.

3. Troubleshooting $\varepsilon \mathcal{X} \mathrm{T}_{\mathrm{E}} \mathrm{X}$

This chapter contains some hints in the case of trouble.

3.1. Why are my files not found?

$\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{E}$ has a configurable search for external resources. This search is controlled by several parameters.

To be completed.

3.2. Why are is the log file different from TEX's?

$\varepsilon_{\chi} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ has the goal to produce a visual result comparable to the one of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. It has been decided explicitly that the contents of the log file is not considered for compatibility.

The log file is meant for a human reader who should not have any trouble with the differences. The log file is not meant to be a means for communicating with another program.
3. Troubleshooting $\varepsilon_{\mathcal{X}} T_{E} X$

4．The Macro Language of $\varepsilon \mathcal{X} \mathrm{T}_{\mathrm{E}} \mathrm{X}$

4．1．Basic Syntactic Entities of $\varepsilon_{X} \mathrm{~T}_{\mathrm{E}} \mathrm{X}$

The underlying parsing routines provide several sytactic entities which are user across the parsing of primitives and their arguments．These general syntactic entities are describes in this section．

The Syntactic Entity $\langle 8$－bit number〉

＜8－bit number〉

A number consists of a non－empty sequence of digits with category code OTHER．The check for a maximal value of 255 is not performed in $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ ．

The Syntactic Entity \langle box \rangle

This method parses the following syntactic entity：
$\langle b o x\rangle$

The Syntactic Entity 〈box register name〉

A box register name determines under which key a box register can be addressed．In $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ this used to be a positive number only．This has been extended to allow also a token list in braces．

Syntax

〈box register name〉
$\rightarrow\langle$ tokens \rangle
｜〈number〉

Examples

123 abc

The Syntactic Entity \langle control sequence〉
 〈control sequence〉

A control sequence is either a active character or an escape sequence．

The Syntactic Entity 〈dimen〉

This method parses the following syntactic entity：

```
<dimen>
```

 \(\rightarrow \quad\)...
 To be completed．

The Syntactic Entity 〈equals〉

This method parses the following syntactic entity：

```
<equals>
    | \langleoptional spaces\rangle
    | \langleoptional spaces\rangle = }\mp@subsup{}{12}{
```


The Syntactic Entity 〈filename〉

This method parses the following syntactic entity：
〈file name〉
The scanning is performed in one of two ways：
－If the first token is a left brace then a block is read until the matching right brace is found．On the way the tokens are expanded．
－Otherwise tokens are read until a space token is encountered．

The Syntactic Entity 〈font〉

This method parses the following syntactic entity：
\langle font \rangle

The Syntactic Entity \langle general text〉

This method corresponds to the following syntax specification：
〈general text〉

The Syntactic Entity \langle number〉

〈number〉
A number consists of a non－empty sequence of digits with category code OTHER．The number is optionally preceded by white space and a sign + or - ．

Tokens are expanded while gathering the requested values．

The Syntactic Entity \langle replacement text〉

This method corresponds to the following syntax specification：
〈replacement text〉

The Syntactic Entity \langle token \rangle
 〈token〉

A single token depends on the category code of the characters．

4．2．Primitives of $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$

$\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{X}$ defines a lot of primitives．Those primitives are described below．

The Primitive \backslash_{\sqcup}

This primitive inserts an explicite space into the current list．This has an effect in horizontal or restricted horizontal modes only．In other modes it has no effect．

The formal description of this primitive is the following：
\langle space primitive \rangle
$\rightarrow \backslash_{\sqcup}$

Examples：
$123 \backslash 456$
$123 \backslash \backslash 456$
The primitive \backslash_{\sqcup} is defined in the set tex．
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive $\backslash /$

To be completed.

The formal description of this primitive is the following:
\langle italic correction \rangle
$\rightarrow \quad \backslash$
Examples:
123\/456
The primitive $\backslash /$ is defined in the set tex.

The Primitive $\backslash \backslash$

To be completed.

The formal description of this primitive is the following:

```
<newline>
        -> \\
```

Examples:
\I
The primitive \backslash
is defined in the set tex.

The Math Primitive \above

To be completed.

Syntax

The formal description of this primitive is the following:

```
<above\rangle
    ->..\\above ...
```


Examples

\{a \above b\}

The primitive \above is defined in the set tex.

The Glue Primitive \abovedisplayshortskip

\abovedisplayshortskip is a skip register. The primitive \abovedisplayshortskip is defined in the set tex.

The Glue Primitive \abovedisplayskip

\abovedisplayskip is a skip register. The primitive \abovedisplayskip is defined in the set tex.

The Math Primitive \abovewithdelims

To be completed

Syntax

The formal description of this primitive is the following:

\langle abovewithdelims \rangle

\rightarrow... \abovewithdelims ...

Examples

```
\abovewithdelims
```

The primitive \abovewithdelims is defined in the set tex.

The Primitive \accent

To be completed.

The formal description of this primitive is the following:

```
<accent\rangle
    \accent ...
```


4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

Examples:

```
\accent 13 a
```

The primitive \accent is defined in the set tex.

The Primitive \addafterocplist

\addafterocplist is not implemented yet.
The primitive \addafterocplist is defined in the set omega.

The Primitive \addbeforeocplist

\addbeforeocplist is not implemented yet.
The primitive \addbeforeocplist is defined in the set omega.

The Count Primitive \adjdemerits

\adjdemerits is a count register. The primitive \adjdemerits is defined in the set tex.

The Primitive \advance

This primitive implements an assignment. The variable given as next tokens is incremented by the quantity given after the optional by.

The formal description of this primitive is the following:

```
<advance\rangle
    \ <optional prefix\rangle\advance <advancable\rangle
<optional prefix\rangle
    ->
    | \global <optional prefix\rangle
<advancable\rangle
    \ <integer variable\rangle\langleoptional by\rangle\langlenumber\rangle
    | \langledimen variable\rangle\langleoptional by\rangle\langledimen\rangle
    | \langleglue variable\rangle\langleoptional by\rangle\langleglue\rangle
    | \langlemuglue variable\rangle\langleoptional by\rangle\langlemuglue\rangle
<optional by>
    [by]
    | \langleoptional spaces\rangle
```


Examples:

\advance\count12 345

```
    \advance\count12 by -345
```

The primitive \advance is defined in the set tex.

The Primitive \afterassignment

The primitive \afterassignment registers the token to be inserted after the next as－ signment．Note that there is at most one token to be inserted after the next assignment． Thus the primitive may overwrite any previously registered token．

The formal description of this primitive is the following：

〈afterassignment〉

\rightarrow \afterassignment 〈token〉
Examples：
\afterassignment\abc
\afterassignment X

```
\afterassignment ~
```

The primitive \afterassignment is defined in the set tex．

The Primitive \aftergroup

This primitive takes the next token and saves it．The saved token will be inserted after the current group has been closed．If several tokens are saved then they will be inserted in the same sequence as they are saved．

Syntax

The formal description of this primitive is the following：
＜aftergroup \rangle
\rightarrow \aftergroup \langle token \rangle

Example：

\｛\aftergroup～xyz\}
$\{\backslash a f t e r g r o u p \backslash a \backslash a f t e r g r o u p \backslash b$ xyz\}
The primitive \aftergroup is defined in the set tex．

The Math Primitive \atop

To be completed．

Syntax

The formal description of this primitive is the following:
$\langle a t o p\rangle$
\rightarrow... \atop ...

Examples

\atop

The primitive \atop is defined in the set tex.

The Math Primitive \atopwithdelims

```
To be completed.
```


Syntax

The formal description of this primitive is the following:
\langle atopwithdelims〉
\rightarrow... \atopwithdelims ...

Examples

\atopwithdelims

The primitive \atopwithdelims is defined in the set tex.

The Primitive \badness

To be completed.

The formal description of this primitive is the following:

```
<badness>
    \ \badness \langleequals\rangle\langlenumber>
```


Examples

\count1=\badness
The primitive \backslash badness is defined in the set tex.

The Glue Primitive \baselineskip

\backslash baselineskip is a skip register．The primitive \baselineskip is defined in the set tex．

The Primitive \batchmode

This primitive sets the interaction mode to batch mode．In batch mode the processing is terminated if the program needs input from the terminal or n error occurs．The output to the terminal is reduced to a minimum．

The setting of the interaction mode is an assignment．The mode is always processed globally．This means it does not interact with the group concept．

Syntax

The formal description of this primitive is the following：
〈batchmode〉
\rightarrow \batchmode

Examples

\batchmode

The primitive \backslash batchmode is defined in the set tex．

The Primitive \begingroup

The primitive \begingroup starts a new group．The new group inherits all properties from the previous group．

The group is usually ended by a corresponding \endgroup．If the job is completed without encountering a proper \endgroup then an error is raised．

Syntax

The formal description of this primitive is the following：
〈begingroup〉
\rightarrow \begingroup

Examples

\begingroup 123 \endgroup
The primitive \begingroup is defined in the set tex．
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \beginL

\backslash beginL is not implemented yet.
The primitive \backslash beginL is defined in the set etex.

The Primitive \beginR

\backslash beginR is not implemented yet.
The primitive \backslash beginR is defined in the set etex.

The Glue Primitive \belowdisplayshortskip

\belowdisplayshortskip is a skip register. The primitive \belowdisplayshortskip is defined in the set tex.

The Glue Primitive \belowdisplayskip

\belowdisplayskip is a skip register. The primitive \belowdisplayskip is defined in the set tex.

The Count Primitive \binoppenalty

\binoppenalty is a count register. The primitive \binoppenalty is defined in the set tex.

The Primitive \botmark

To be completed.

The formal description of this primitive is the following:
\botmark ...
Examples:

```
\botmark ...
```

The primitive \botmark is defined in the set tex.

The Primitive \botmarks

\botmarks is not implemented yet.
The primitive \botmarks is defined in the set etex.

The Primitive \box

To be completed.

The formal description of this primitive is the following:
$\langle b o x\rangle$
$\rightarrow \quad \backslash$ box $\langle 8$-bit number \rangle
Examples:
\box42

The primitive \backslash box is defined in the set tex.

The Dimen Primitive \boxmaxdepth

\boxmaxdepth is a dimen register. The primitive \boxmaxdepth is defined in the set tex.

The Count Primitive \brokenpenalty

\backslash brokenpenalty is a count register. The primitive \brokenpenalty is defined in the set tex.

The Primitive \catcode

The primitive \catcode can be used to influence the tokenizer of $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$. This is done by assigning category codes to single characters.

To be completed.

The assignment is controlled by the prefix macro \global and the count parameter $\backslash g l o b a l d e f s$. Usually the assignment is acting on the current group only. If the count parameter \globaldefs is greater than 0 or the prefix \global is given then the assignment is applied to all groups.

The following table contains the category codes with their meaning and the mapping to numerical values.

4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

ESCAPE	0
LEFTBRACE	1
RIGHTBRACE	2
MATHSHIFT	3
TABMARK	4
CR	5
MACROPARAM	6
SUPMARK	7
SUBMARK	8
IGNORE	9
SPACE	10
LETTER	11
OTHER	12
ACTIVE	13
COMMENT	14
INVALID	15

Syntax

The formal description of this primitive is the following：
〈catcode〉
$\rightarrow\langle$ prefix $\rangle \backslash$ catcode $\langle 8$－bit number〉 \langle equals $\rangle\langle 4$－bit number \rangle
$\langle p r e f i x\rangle$
$\overrightarrow{\mid}\langle$ global \rangle

Examples

```
\catcode '\%=12
```

```
\global\catcode `\%=11
```


\catcode as a Count Value

\catcode can be used wherever a count value is required．
The primitive \catcode is defined in the set tex．

The Primitive \char

The primitive \char provides access to any character in the current font．The argu－ ment is the numeric value of the character．This value can be any expanded expression resulting in a number of the proper range．

If no proper argument is found then an error is raised．

Syntax

The formal description of this primitive is the following：
〈char〉
\rightarrow \char \langle number \rangle

Examples

```
\char42
\char\count1
```

The primitive \char is defined in the set tex．

The Primitive \chardef

To be completed．

Syntax

The formal description of this primitive is the following：

```
<chardef>
    \chardef <control sequence\rangle\langleequals\rangle\langle8-bit number\rangle
```


Examples

```
\chardef\abc=45
```

```
\chardef\abc 33
```

The primitive \chardef is defined in the set tex．

The Primitive \cleaders

To be completed．

The formal description of this primitive is the following：
〈cleaders〉
\rightarrow \cleaders ．．．

Examples：

```
\cleaders\hrul\hfill
```

The primitive \cleaders is defined in the set tex．

4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \clearocplists

\clearocplists is not implemented yet．
The primitive \clearocplists is defined in the set omega．

The Primitive \closein

The primitive takes one expanded integer argument．This argument denotes a read register which will be closed if it is currently assigned to a file．

Syntax

The formal description of this primitive is the following：

```
〈closein〉
    \(\rightarrow\) \closein \(\langle\) number〉
```


Examples

\closein5

\closein\count120

The primitive \closein is defined in the set tex．

The Primitive \closeout

The primitive takes one expanded integer argument．This argument denotes a write register which will be closed if it is currently assigned to a file．

Syntax

The formal description of this primitive is the following：

```
<closeout>
    \closeout <number\rangle
```


Examples

```
\closeout5
```

\closeout\count120

The primitive \closeout is defined in the set tex．

The Primitive \clubpenalties

\clubpenalties is not implemented yet．
The primitive \clubpenalties is defined in the set etex．

The Count Primitive \clubpenalty

\clubpenalty is a count register．The primitive \clubpenalty is defined in the set tex．

The Primitive \copy

To be completed．

The formal description of this primitive is the following：
〈copy〉
\rightarrow \copy $\langle 8$－bit number〉
Examples：
\copy42
The primitive \copy is defined in the set tex．

The Primitive \count

```
To be completed．
```


Syntax

The formal description of this primitive is the following：

```
<count>
    \count <8-bit number\rangle\langleequals\rangle\langlenumber\rangle
```


Examples

```
\count23=-456
```

The primitive \count is defined in the set tex．
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \countdef

To be completed.

The formal description of this primitive is the following:

\langle countdef \rangle

\rightarrow \countdef \langle control sequence $\rangle\langle$ equals〉 $\langle 8$-bit number〉
Examples:
\countdef \backslash abc $=45$
\countdef \backslash abc 33
The primitive \countdef is defined in the set tex.

The Primitive \cr

To be completed.

The formal description of this primitive is the following:

$$
\langle c r\rangle \rightarrow \quad \backslash c r
$$

Examples:

```
\cr
```

The primitive $\backslash c r$ is defined in the set tex.

The Primitive \crcr

To be completed.

The formal description of this primitive is the following:
$\langle c r c r\rangle$
\rightarrow \crcr
Examples:
\crer
The primitive $\backslash \mathrm{crcr}$ is defined in the set tex.

The Primitive \csname

To be completed.

When $T_{E X}$ expands \csname it reads to the matching \endcsname, expanding tokens as it goes; only character tokens should remain after this expansion has taken place. Then the "expansion" of the entire \csname...\endcsname text will be a single control sequence token, defined to be like $\backslash r e l a x$ if its meaning is currently undefined.

Syntax

The formal description of this primitive is the following:

```
<csname\rangle
    \\csname \langle...\rangle\endcsname
```


Examples

```
\csname abc\endcsname
```

```
\csname ab#de\endcsname
```

The example is valid. It shows that even non-character tokens might be contained.

```
\csname \TeX\endcsname
```

This is usually illegal since $\backslash T e \mathrm{X}$ is defined in plain to contain some non-expandable primitives.

The primitive \csname is defined in the set tex.

The Primitive \currentgrouplevel

The formal description of this primitive is the following:

```
<currentgrouplevel>
    \currentgrouplevel
```

Examples:

```
\the\currentgrouplevel
```

The primitive \currentgrouplevel is defined in the set etex.

The Primitive \currentgrouptype

\currentgrouptype is not implemented yet.
The primitive \currentgrouptype is defined in the set etex.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \currentifbranch

\currentifbranch is not implemented yet.
The primitive \currentifbranch is defined in the set etex.

The Primitive \currentiflevel

\currentiflevel is not implemented yet.
The primitive \currentiflevel is defined in the set etex.

The Primitive \currentiftype

\currentiftype is not implemented yet.
The primitive \currentiftype is defined in the set etex.

The Count Primitive \day

\day is a count register. The primitive \day is defined in the set tex.

The Count Primitive \deadcycles

\deadcycles is a count register. The primitive \deadcycles is defined in the set tex.

The Primitive \def

To be completed.

The formal description of this primitive is the following:

```
<def\rangle
    -> \langleprefix\rangle\def <control sequence\rangle <parameter text\rangle { \langlereplacement text\rangle}
<prefix\rangle
    \global <prefix\rangle
    \long <prefix\rangle
    \outer <prefix\rangle
```

Examples:

```
\def#1{--#1--}
```

The primitive \def is defined in the set tex.

The Count Primitive \defaulthyphenchar

\defaulthyphenchar is a count register. The primitive \defaulthyphenchar is defined in the set tex.

The Primitive \DefaultInputMode

\backslash DefaultInputMode is not implemented yet.
The primitive \DefaultInputMode is defined in the set omega.

The Primitive \DefaultInputTranslation

\DefaultInputTranslation is not implemented yet.
The primitive \DefaultInputTranslation is defined in the set omega.

The Primitive \DefaultOutputMode

\DefaultOutputMode is not implemented yet.
The primitive \DefaultOutputMode is defined in the set omega.

The Primitive \DefaultOutputTranslation

\backslash DefaultOutputTranslation is not implemented yet.
The primitive \DefaultOutputTranslation is defined in the set omega.

The Count Primitive \defaultskewchar

\defaultskewchar is a count register. The primitive \defaultskewchar is defined in the set tex.

The Math Primitive \delcode

The primitive \delcode can be used to assign and query the delimiter code for a character. The delimiter code determines, how a character is typeset in math mode.

The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ encoding interprets the number as 27 bit hex number: "csyylxx. Here the digits have the following meaning:
c the math class of this delimiter. It has a range from 0 to 7 .
I the family for the large character. It has a range from 0 to 15 .
xx the character code of the large character.
\mathbf{s} the family for the small character. It has a range from 0 to 15 .
yy the character code of the small character.

4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The assigning a new value to a delimiter code acts in a group restricted way unless declared differently. If the prefix \backslash global is given then the assignment is performed globally. The same effect can be achieved when the count register \globaldefs is greater than 0 .

Syntax

The formal description of this primitive is the following:

```
<delcode\rangle
    \prefix\rangle\delcode <8-bit number\rangle\langleequals\rangle\langle8-bit number\rangle
<prefix\rangle
    | global\rangle
```


Examples

```
\delcode'x="123456
```

```
    \global\delcode`x="123456
```


Using as Count Register

The primitive \delcode can be used like a count register. This means you can use it wherever a number is expected. In addition the value can be advanced, multiplied, and divided. In any case the delimiter code is translated according to the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ encoding and processed as number.

Examples

```
\count1=\delcode'x
    \advance\delcode'x by 42
```

The primitive \delcode is defined in the set tex.

The Math Primitive \delimiter

The math primitive \delimiter can be used to insert a delimiter. Thus it is possible to bypass the definition of the delimiter code as assigned to single characters.

> To be completed.

Syntax

The formal description of this primitive is the following：
〈delimiter〉
\rightarrow \delimiter \langle delcode〉

Examples

\delimiter＂426830A
The primitive \delimiter is defined in the set tex．

The Count Primitive \delimiterfactor

\delimiterfactor is a count register．The primitive \delimiterfactor is defined in the set tex．

The Dimen Primitive \delimitershortfall

\delimitershortfall is a dimen register．The primitive \delimitershortfall is de－ fined in the set tex．

The Primitive \detokenize

\detokenize is not implemented yet．
The primitive \detokenize is defined in the set etex．

The Primitive \dimen

The primitive \dimen provides access to the dimen registers．Those registers contain length values．
\square
To be completed．

Syntax

The formal description of this primitive is the following：
〈dimen〉
$\rightarrow\langle p r e f i x\rangle \backslash$ dimen $\langle k e y\rangle . .$.

Examples

```
\dimen1=12 pt
```

The primitive \backslash dimen is defined in the set tex.

The Primitive \dimendef

To be completed.

The formal description of this primitive is the following:

```
<dimendef>
    \\dimendef <control sequence\rangle\langleequals\rangle\langle8-bit number\rangle
```

Examples:

```
\dimendef \abc=45
```

```
\dimendef\abc 33
```

The primitive \dimendef is defined in the set tex.

The Primitive \dimenexpr

The primitive \dimenexpr provides a means to use a inline way of writing mathematical expressions to be evaluated. Mathematical expressions can be evaluated in $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ using \advance, \multiply, and \divide. Nevertheless those primitives result in an assignment. This is not the case for \dimenexpr. Here the intermediate results are not stored in dimen registers but kept internally. Also the application of \afterassignment and \tracingassigns is suppressed.

The mathematical expression to be evaluated can be made up of the basic operations addition $(+)$, subtraction $(-)$, multiplication $\left({ }^{*}\right)$ with numbers, and division $(/)$ by numbers. The unary minus can be used. Parentheses can be used for grouping. Anything which looks like a length can be used as argument. White-space can be used freely without any harm.

The expression is terminated at the first token which can not be part of an expression. For instance a letter may signal the end of the expression. If the expression should terminate without a proper token following it, the token \relax can be used to signal the end of the expression. This \relax token is silently consumed by \dimenexpr.

The primitive \dimenexpr can be used in any place where a dimen is required. This includes assignments to dimen registers and comparisons.

Syntax

The formal description of this primitive is the following:

```
\(\langle\) dimenexpr \(\rangle\)
    \(\rightarrow\) \dimenexpr \(\langle\) expr \(\rangle \backslash r e l a x\)
    | \dimenexpr \(\langle e x p r\rangle\)
\(\langle e x p r\rangle\)
    \(\rightarrow\langle\) operand \(\rangle\)
    \(\mid\langle\) operand \(\rangle+\langle\operatorname{expr}\rangle\)
    \(\mid\langle\) operand \(\rangle-\langle\) expr \(\rangle\)
\(\langle\) operand \(\rangle\)
    \(\rightarrow\langle\) dimen \(\rangle\)
    | \(\langle\) operand \(\rangle *\langle\) number \(\rangle\)
    | \(\quad\) number \(\rangle *\langle\) operand \(\rangle\)
    | \(\langle\) operand \(\rangle /\langle\) number \(\rangle\)
    | - \(\langle e x p r\rangle\)
    \(\mid(\langle e x p r\rangle)\)
```


Examples

```
\count1=\dimenexpr 23pt \relax
```

\count1=\dimenexpr 2 * 3pt \relax
\count1=\dimenexpr 2pt*\count2
\backslash count1=\dimenexpr $2 *(1 \mathrm{pt}+3 \mathrm{em})$
\count1=\dimenexpr 2*-\dimen0

The primitive \dimenexpr is defined in the set etex.

The Primitive \discretionary

The primitive \discretionary can be used to insert an optional break point into the paragraph. The optional break point consists of three parts. The first part is inserted into the paragraph if no line breaking happens at this position. In case that the line breaking chooses this place for a line break then the second part of the discretionary is inserted at the end of the current line and the third part is inserted at the beginning of the next line.

The three parts are given as three sequences of characters in braces. It may be composed of characters, ligatures, and rules only.

In math mode the third part is forced to be empty.

Syntax

The formal description of this primitive is the following:
〈discretionary〉
\rightarrow \discretionary.........

Examples

```
\discretionary{f-}{fi}{ffi}
\discretionary{-}{}{}
```

The primitive \discretionary is defined in the set tex.

The Dimen Primitive \displayindent

\displayindent is a dimen register. The primitive \displayindent is defined in the set tex.

The Math Primitive \displaylimits

```
To be completed.
```


Syntax

The formal description of this primitive is the following:

```
<displaylimits>
    \ \displaylimits
```


Examples

```
\displaylimits
```

The primitive \displaylimits is defined in the set tex.

The Math Primitive \displaystyle

> To be completed.

Syntax

The formal description of this primitive is the following：
〈displaystyle〉
\rightarrow \displaystyle

Examples

\displaystyle
The primitive \displaystyle is defined in the set tex．

The Primitive \displaywidowpenalties

\displaywidowpenalties is not implemented yet．
The primitive \displaywidowpenalties is defined in the set etex．

The Count Primitive \displaywidowpenalty

\displaywidowpenalty is a count register．The primitive \displaywidowpenalty is defined in the set tex．

The Dimen Primitive \displaywidth

\displaywidth is a dimen register．The primitive \displaywidth is defined in the set tex．

The Primitive \divide

This primitive implements an assignment．The variable given as next tokens is divided by the quantity given after the optional by．

The formal description of this primitive is the following：
〈divide〉
\rightarrow \divide 〈dividable〉
\langle dividable〉
$\rightarrow\langle$ integer variable〉 〈optional by $\rangle\langle 8$－bit number \rangle
｜〈dimen variable〉 〈optional by〉 〈8－bit number〉
｜\langle glue variable $\rangle\langle$ optional by $\rangle\langle 8$－bit number \rangle
｜〈muglue variable〉 〈optional by〉〈8－bit number〉
〈optional by〉
\rightarrow［by］
｜〈optional spaces〉

4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

Examples:

```
\divide\count12 345
```

```
\divide\count12 by -345
```

The primitive \divide is defined in the set tex.

The Count Primitive \doublehyphendemerits

\doublehyphendemerits is a count register. The primitive \doublehyphendemerits is defined in the set tex.

The Primitive \dp

The primitive $\backslash d p$ refers to the depth of a box register. It can be used in various contexts.

Execution of the Primitive

If the primitive is used in a context it initiated an assignment to the actual depth of the box register. This has an effect only in the case that the box register is not void.

The formal description of this primitive is the following:
$\langle d p\rangle$
$\rightarrow\langle$ optional prefix $\rangle \backslash \mathrm{dp}\langle 8$-bit number $\rangle\langle$ equals $\rangle\langle$ dimen \rangle
$\langle o p t i o n a l ~ p r e f i x\rangle$
\rightarrow
| \global <optional prefix〉
Examples:

$$
\backslash \mathrm{dp} 42=12 \mathrm{~mm}
$$

```
\dp42 = \dimen3
```


Expansion of the Primitive

In an expansion context the primitive results in the the currentr depth of the given box register. In case that the box register is empty the result is 0 pt .

The formal description of this primitive is the following:
\dp $\langle 8$-bit number \rangle
Examples:

```
\dimen0 = \dp42
```

Conversion to a Count

To be completed.

Interaction with \the

To be completed.

The primitive $\backslash d p$ is defined in the set tex.

The Primitive \dump

The primitive writes out the current state of the interpreter to an format file. This format file can be read back in to restore the saved state.

The primitive can be used outside of any group only.
To be completed.

Syntax

The formal description of this primitive is the following:
$\langle d u m p\rangle$
\rightarrow \dump

Examples

```
    \dump
```

The primitive \dump is defined in the set tex.

The Primitive \edef

To be completed.

The formal description of this primitive is the following:

```
<edef\rangle
    -> \langleprefix\rangle\edef <control sequence\rangle\langleparameter text\rangle { \langlereplacement text\rangle}
<prefix>
    \global <prefix\rangle
    \long <prefix\rangle
    \outer <prefix\rangle
```

Examples:

```
\edef#1{--#1--}
```

The primitive \edef is defined in the set tex.

The Primitive \efcode

\efcode is not implemented yet.
The primitive $\backslash e f c o d e$ is defined in the set pdftex.

The Primitive \else

The primitive \else can not be used alone. It always comes in conjunction with a conditional. A isolated \else leads to an error immediately.

Syntax

The formal description of this primitive is the following:

```
<else\rangle
    \else \langle...\rangle
```


Examples

\ifnum $1<2 \backslash e l s e$ no\fi
The primitive \else is defined in the set tex.

The Dimen Primitive \emergencystretch

\emergencystretch is a dimen register. The primitive \emergencystretch is defined in the set tex.

The Primitive \end

}The primitive \end closes all input stream and discards all tokens which might be waiting to be read. This usually mean the end of the processing of one document.

Syntax

The formal description of this primitive is the following:
$\langle e n d\rangle$
\rightarrow \end }

Examples

```
\end
```

The primitive \end is defined in the set tex.

The Primitive \endcsname

The macro \endcsname is used in combination with the macro \csname only. Whenever a \endcsname is seen alone it must be an error. Thus thus primitive produces an error message in any case.

Syntax

The formal description of this primitive is the following:

```
\(\langle e n d c s n a m e\rangle\)
    \(\rightarrow\) \endscsname
```


Examples

The following example shows a complicated way to invoke the macro abc. Here the primitive \endcsname is legal. It is consumed by the primitive \csname and nt expanded by its own.
\csname abc\endcsname
The primitive \endcsname is defined in the set tex.

The Primitive \endgroup

The primitive \endgroup closes the current group all properties are reset to the values they had before the group had been entered. A group is usually opened with \backslash begingroup.

If no group has been opened then an error is raised.

Syntax

The formal description of this primitive is the following:

```
<endgroup>
    \endgroup
```


Examples

\begingroup 123 \endgroup
The primitive \endgroup is defined in the set tex.

The Primitive \endinput

The primitive \endinput closes the topmost file input stream. All tokens collected for this input stream and the ones above are discarded. This means that you can place arbitrary text behind this primitive in a file. This text is ignored immediately.

Syntax

The formal description of this primitive is the following:

```
<endinput>
    \endinput
```


Examples

```
\endinput ... and some ignored text
```

The primitive \endinput is defined in the set tex.

The Primitive \endL

\endL is not implemented yet.
The primitive \endL is defined in the set etex.

The Count Primitive \endlinechar

\endlinechar is a count register. The primitive \endlinechar is defined in the set tex.

The Primitive \endR

\endR is not implemented yet.
The primitive $\backslash e n d R$ is defined in the set etex.

The Math Primitive \eqno

> To be completed.

Syntax

The formal description of this primitive is the following:
\langle eqno〉
\rightarrow \eqno

Examples

\eqno

The primitive \eqno is defined in the set tex.

The Toks Primitive \errhelp

\errhelp is a toks register. The primitive \errhelp is defined in the set tex.

The Primitive \errmessage

The primitive \errmessage takes one argument. This argument is an expanded list of tokens. Those tokens are presented as error message

The formal description of this primitive is the following:

```
<eqno>
    \ \errmessage <tokens\rangle
```

Examples:

```
\errmessage{}
```

The primitive \errmessage is defined in the set tex.

The Count Primitive \errorcontextlines

\errorcontextlines is a count register. The primitive \errorcontextlines is defined in the set tex.

The Primitive \errorstopmode

This primitive sets the interaction mode to error stop mode. In error stop mode the processing is interrupted and the error handler is invoked when an error occurs.

The setting of the interaction mode is an assignment. The mode is always processed globally. This means it does not interact with the group concept.

Syntax

The formal description of this primitive is the following:
〈errorstopmode〉
\rightarrow \errorstopmode

Examples

\errorstopmode

The primitive \errorstopmode is defined in the set tex.

The Count Primitive \escapechar

\escapechar is a count register. The primitive \escapechar is defined in the set tex.

The Toks Primitive \eTeXrevision

\eTeXrevision is a toks register. The primitive \eTeXrevision is defined in the set etex.

The Count Primitive \eTeXversion

\eTeXversion is a count register. The primitive \eTeXversion is defined in the set etex.

The Toks Primitive \everycr

\everycr is a toks register. The primitive \everycr is defined in the set tex.
The Toks Primitive \everydisplay
\everydisplay is a toks register. The primitive \everydisplay is defined in the set tex.

The Toks Primitive \everyeof

\everyeof is a toks register. The primitive \everyeof is defined in the set etex.

The Toks Primitive \everyhbox

\everyhbox is a toks register. The primitive \everyhbox is defined in the set tex.

The Toks Primitive \everyjob
\everyjob is a toks register．The primitive \everyjob is defined in the set tex．

The Toks Primitive \everymath

\everymath is a toks register．The primitive \everymath is defined in the set tex．

The Toks Primitive \everypar

\everypar is a toks register．The primitive \everypar is defined in the set tex．

The Toks Primitive \everyvbox

\everyvbox is a toks register．The primitive \everyvbox is defined in the set tex．

The Count Primitive \exhyphenpenalty

\exhyphenpenalty is a count register．The primitive \exhyphenpenalty is defined in the set tex．

The Primitive \expandafter

To be completed．

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ first reads the token that comes immediately after \expandafter，without ex－ panding it；let＇s call this token t ．Then $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ reads the token that comes after t（and possibly more tokens，if that token has an argument），replacing it by its expansion． Finally $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ puts t back in front of that expansion．

The formal description of this primitive is the following：
〈expandafter〉
\rightarrow \expandafter 〈control sequence〉 ．．．

Examples：

```
\expandafter ...
```

The primitive \expandafter is defined in the set tex．

4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \export

The primitive \export takes a list of tokens and saves them away for an associated \import. The tokens in the list are either control sequence tokens or active characters. All other tokens are ignored.

The formal description of this primitive is the following:

```
<export>
    \export <replacement text\rangle
```

Examples:

```
\export{\a\b}
```

The primitive \export is defined in the set namespace.

The Count Primitive $\backslash f a m$

$\backslash f a m$ is a count register. The primitive $\backslash f a m$ is defined in the set tex.

The Primitive \fi

This primitive indicates the end of an conditional. As such it can not appear alone but only in combination with a preceding \if*.

Syntax

The formal description of this primitive is the following:
$\langle i\rangle$
\rightarrow \fi

Examples

```
\fi
```

The primitive $\backslash f i$ is defined in the set tex.

The Count Primitive \finalhyphendemerits

\finalhyphendemerits is a count register. The primitive \finalhyphendemerits is defined in the set tex.

The Primitive \firstmark

To be completed．

The formal description of this primitive is the following：
\firstmark ．．．
Examples：

```
\firstmark ...
```

The primitive \backslash firstmark is defined in the set tex．

The Primitive \firstmarks

\firstmarks is not implemented yet．
The primitive \firstmarks is defined in the set etex．

The Count Primitive \floatingpenalty

\floatingpenalty is a count register．The primitive \floatingpenalty is defined in the set tex．

The Primitive \font

The primitive \font can be used to load a font with some specified properties and assign it to a control sequence．The primary option is the specification of a size for the font．If no size is given then the font is loaded at its design size．

An exact size can be specified with the at keyword．The dimension following this keyword determines the size of the font．

The design size can be multiplied by a scale factor．This scale fator is given as number after the keyword scaled．The value given is 1000 times the scale factor to be used．

To be completed．

This primitive is an assignment．
The formal description of this primitive is the following：
〈font〉
\rightarrow \font \langle control sequence〉 〈equals〉 〈font name〉 〈options〉〈options〉
$\rightarrow\langle$ option \rangle
$\mid\langle$ option $\rangle\langle o p t i o n s\rangle$
〈option〉

4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$
\rightarrow［scaled］〈number〉
［at］〈size．．．〉
［noligatures］ ［nokerning］ ［letterspaced］

Examples

In the following example the font cmr12 is loaded at its design size．The macro \backslash myfont is bound to this font．

```
\font\myfont=cmr12
```

In the following example the font cmr 12 is loaded at the size 15 pt ．The macro \backslash myfont is bound to this font．

```
\font\myfont=cmr12 at 15pt
```

In the following example the font cmr12 is loaded at the double design size．The scale factor 2000 is divided by 1000 to get the effective scaling factor．The macro \myfont is bound to this font．

```
\font\magnifiedfiverm=cmr5 scaled 2000
```

In the following example the font cmr 10 is loaded at the size of 12 true pt ．The macro $\backslash m y f o n t ~ i s ~ b o u n d ~ t o ~ t h i s ~ f o n t . ~$

```
\font\second=cmr10 at 12truept
```

The primitive \backslash font is defined in the set tex．

The Primitive \fontchardp

To be completed．

The formal description of this primitive is the following：

〈fontchardp〉

\rightarrow \fontchardp \langle font $\rangle\langle$ number \rangle
Examples：

```
\dimen0 = \fontchardp\tenrm 'a
```

The primitive \backslash fontchardp is defined in the set etex．

The Primitive \fontcharht

To be completed.

The formal description of this primitive is the following:
\fontcharht
Examples:

```
\fontcharht\tenrm 'a
```

The primitive \backslash fontcharht is defined in the set etex.

The Primitive \fontcharic

To be completed.

The formal description of this primitive is the following:

```
\fontcharic
```

Examples:

```
\fontcharic\tenrm 'a
```

The primitive \backslash fontcharic is defined in the set etex.

The Primitive \fontcharwd

To be completed.

The formal description of this primitive is the following:
\fontcharwd
Examples:

```
\fontcharwd\tenrm 'a
```

The primitive \backslash fontcharwd is defined in the set etex.

4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \fontdimen

The primitive \backslash fontdimen can be used to set a font dimension value. Each font has an arbitrary number of dimen values which are addressed by an numerical index in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. In $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ this has been extended to arbitrary strings.

The primitive expands to the value of the font dimension in a right hand context.
The formal description of this primitive is the following:
\backslash fontdimen $\langle 8$-bit number $\rangle\langle$ font $\rangle\langle e q u a l s\rangle\langle$ dimen \rangle

To be completed.

Examples:

```
\fontdimen13\ff=5pt
```

```
\the\fontdimen13\ff
```

```
\the\fontdimen{em}\ff=8pt
```

The primitive \backslash fontdimen is defined in the set tex.

The Primitive \fontname

The primitive \fontname can be used to retrieve the name of a font. It takes a font specification as argument. It expands to the name of the font. If this font is not loaded at its design size then the actual size is appended after the tokens at . All tokens produced this way are other tokens except of the spaces. Ths means that even the letters are of category other.

The primitive \backslash fontname is defined in the set tex.

The Primitive \futurelet

To be completed.

The formal description of this primitive is the following:

```
<uturelet>
    \futurelet <control sequence\rangle\langletoken\rangle ...
```


Examples:

```
\futurelet ...
```

The primitive \futurelet is defined in the set tex.

The Primitive \gdef

To be completed.

The formal description of this primitive is the following:

```
<gdef\rangle
    -> \langleprefix\rangle\gdef <control sequence\rangle\langleparameter text\rangle { \langlereplacement text\rangle}
<prefix\rangle
    ->
    | \global <prefix\rangle
    | \long <prefix\rangle
    | \outer \langleprefix\rangle
```

Examples:

```
\gdef#1{--#1--}
```

The primitive \gdef is defined in the set tex.

The Prefix Primitive \global

The primitive $\backslash \mathrm{global}$ is a prefix macro. It does not do anything by its own but works in combination with a following primitive token only. If the following token constitutes an assignment then the assignment is not restricted to the current group but acts globallay in all groups.

If the following command token does not happen to be an operation for which the global modifier is applicable then a warning might be raised.

The formal description of this primitive is the following:

```
\global>
    \global \langle...\rangle
```


Examples

The following example shows that two macros defined in a group. The first macro falls back to its previous binding when the group is closed. The second macro has the same binding in all groups. defined.

```
\begingroup
    \def\a{123}
    \global\def\b{123}
\endgroup
```

The following example shows that two count registers are set in a group. The first count register keeps its value untile the group is closed and falls back to the value it had when the group has been entered. The second count register keeps its value even when the group is closed.

```
\begingroup
    \count1=123
    \global\count2=45
\endgroup
```

The primitive $\backslash \mathrm{global}$ is defined in the set tex.

The Count Primitive \globaldefs

$\backslash g l o b a l d e f s$ is a count register. The primitive $\backslash g l o b a l d e f s$ is defined in the set tex.

The Primitive \glueexpr

\glueexpr is not implemented yet.
The primitive \backslash glueexpr is defined in the set etex.

The Primitive \glueshrink

The primitive \glueshrink translates a shrink part of a glue value into a length. The shrink order is stripped and just the size is preserved. The unit is changed to pt. For instance, if the value considered is 8pt minus 1.23 fil then \glueshrink returns 1.23 pt .
The primitive \glueshrink can be used wherever a length is expected. The primitive is also applicable to \the.

Syntax

The formal description of this primitive is the following:

```
\glueshrink>
    \glueshrink <glue\rangle
```


Examples

```
\glueshrink\skip1
```

The primitive \glueshrink is defined in the set etex.

The Primitive \glueshrinkorder

The primitive \glueshrinkorder determines the order of the glue shrink component of the following glue specification. A fixed, non-shrinkable glue returns the value 0 . Glue with the order fil gives 1 , fill gives 2 , and fill gives 3 .

Note that the glue specification of 1 fi returns also 1 . This is due to the compatibility with $\varepsilon-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ which does not have this unit. This unit has been introduced by Omega.

The formal description of this primitive is the following:
\langle glueshrinkorder〉
\rightarrow \glueshrinkorder 〈glue〉

Examples

```
\glueshrinkorder\skip1
```

The primitive \backslash glueshrinkorder is defined in the set etex．

The Primitive \gluestretch

The primitive \gluestretch translates a stretch part of a glue value into a length．The stretch order is stripped and just the size is preserved．The unit is changed to pt．For instance，if the value considered is 8 pt plus 1.23 fil then $\backslash \mathrm{gluestretch}$ returns 1.23 pt ．

The primitive $\backslash g l u e s t r e t c h ~ c a n ~ b e ~ u s e d ~ w h e r e v e r ~ a ~ l e n g t h ~ i s ~ e x p e c t e d . ~ T h e ~ p r i m i t i v e ~$ is also applicable to \the．

Syntax

The formal description of this primitive is the following：
\langle gluestretch \rangle
\rightarrow \gluestretch \langle glue \rangle

Examples

```
\gluestretch\skip1
```

The primitive \gluestretch is defined in the set etex．

The Primitive \gluestretchorder

The primitive \gluestretchorder determines the order of the glue stretch component of the following glue specification．A fixed，non－stretchable glue returns the value 0 ． Glue with the order fil gives 1 ，fill gives 2 ，and fill gives 3 ．

Note that the glue specification of 1 fi returns also 1 ．This is due to the compatibility with $\varepsilon-\mathrm{T}_{\mathrm{E}} \mathrm{X}$ which does not have this unit．This unit has been introduced by Omega．

The formal description of this primitive is the following：
\langle gluestretchorder〉
\rightarrow \gluestretchorder $\langle g l u e\rangle$

Examples

```
\gluestretchorder\skip1
```

The primitive \gluestretchorder is defined in the set etex．

The Primitive \halign

To be completed.

The formal description of this primitive is the following:

```
<halign>
    \ \halign <box specification\rangle { \langlepreamble\rangle\cr \langlerows\rangle}
\langlebox specification\rangle
    ->
    | to <rule dimension\rangle
        spread 〈rule dimension\rangle
<rows\rangle
```



```
    | \langlerow\rangle\langlerows\rangle
<preamble>
    -> ..
```

Examples:

```
\halign
```

The primitive \backslash halign is defined in the set tex.

The Count Primitive \hangafter

\hangafter is a count register. The primitive \hangafter is defined in the set tex.

The Dimen Primitive \hangindent

\hangindent is a dimen register. The primitive \hangindent is defined in the set tex.

The Count Primitive \hbadness

\hbadness is a count register. The primitive \hbadness is defined in the set tex.

The Primitive \hbox

To be completed.

The contents of the toks register \everyhbox is inserted at the beginning of the horizontal material of the box.

The formal description of this primitive is the following:

```
<hbox\rangle
    \hbox <box specification\rangle { <horizontal material\rangle}
\langlebox specification\rangle
    ->
    | to \langlerule dimension\rangle
    | spread 〈rule dimension\rangle
    Examples:
\hbox{abc}
\hbox to 120pt{abc}
\hbox spread 12pt{abc}
```


The Tokens Parameter \everyhbox

The tokens parameter is used in /hbox. The tokens contained are inserted at the beginnig of the horizontal material of the hbox.

The primitive \hbox is defined in the set tex.

The Primitive \hfil

To be completed.

The formal description of this primitive is the following:
$\langle h f i\rangle$

$$
\rightarrow \quad \backslash \mathrm{hfi}
$$

Examples:
\hfi
The primitive $\backslash \mathrm{hfi}$ is defined in the set omega.

The Primitive \hfil

To be completed.

The formal description of this primitive is the following:
$\langle h f i l\rangle$
\rightarrow \hfil

Examples:
\hfil
The primitive \hfil is defined in the set tex.

The Primitive \hfill

To be completed.

The formal description of this primitive is the following:
〈hfill>
\rightarrow \hfill
Examples:
\hfill
The primitive \backslash hfill is defined in the set tex.

The Primitive \hfilneg

To be completed.

The formal description of this primitive is the following:

```
<hfilneg\rangle
    \hfilneg
```


Examples:

\hfilneg
The primitive $\backslash h f i l n e g$ is defined in the set tex.

The Dimen Primitive \hfuzz

$\backslash h f u z z$ is a dimen register. The primitive \hfuzz is defined in the set tex.

The Dimen Primitive \hoffset

\backslash hoffset is a dimen register. The primitive \hoffset is defined in the set tex.

The Count Primitive \holdinginserts

\holdinginserts is a count register. The primitive \holdinginserts is defined in the set tex.

The Primitive \hrule

This primitive produces a horizontal rule. This is a rectangular area of specified dimensions. If not overwritten the width and depth are 0 pt and the height is 0.4 pt (26214 sp).

The formal description of this primitive is the following:

```
<hrule\rangle
    \hrule〈rule specification\rangle
<rule specification\rangle
    \langleoptional spaces\rangle
    | \langlerule dimension\rangle\langlerule specification\rangle
<rule dimension\rangle
    width \langledimen\rangle
    | height \langledimen\rangle
    | depth <dimen\rangle
```

The color from the typographic context is taken as foreground color for the rule. The default color is black.

Examples:

```
\hrule
```

```
\hrule width 2pt
```

```
\hrule width 2pt depth 3mm height \dimen4
```

The primitive \hrule is defined in the set tex.

The Dimen Primitive \hsize

\hsize is a dimen register. The primitive \hsize is defined in the set tex.

The Primitive \hskip

To be completed.

The formal description of this primitive is the following:

4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

〈hskip〉
\rightarrow \hskip \langle Glue〉
Examples：
\hskip 1 em plus 1 pt minus 1 pt
The primitive \hskip is defined in the set tex．

The Primitive \hss

To be completed．

The formal description of this primitive is the following：

$$
\langle h s s\rangle
$$

\rightarrow ไhss
Examples：
\hss
The primitive \backslash hss is defined in the set tex．

The Primitive \ht

To be completed．

The formal description of this primitive is the following：
$\langle h t\rangle$
$\rightarrow \quad$ hht $\langle 8$－bit number $\rangle\langle$ equals $\rangle\langle$ dimen \rangle
Examples：
\ht42
The primitive \ht is defined in the set tex．

The Primitive \hyphenation

To be completed．

Syntax

〈hyphenation〉

\rightarrow \hyphenation ..

Example:

\hyphenation\{as-so-ciate as-so-ciates\}
The primitive \hyphenation is defined in the set tex.

The Primitive \hyphenchar

To be completed.

The formal description of this primitive is the following:
\hyphenchar \langle font $\rangle\langle$ equals $\rangle\langle 8$-bit number \rangle
Examples:
\hyphenchar \backslash font=132

Incompatibility

The TeXbook gives no indication ow the primitive should react for negative values except -1 . The implementation of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ allows to store and retrieve arbirary negative values. This behaviour of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is not preserved in $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$.

The primitive \hyphenchar is defined in the set tex.

The Count Primitive \hyphenpenalty

\hyphenpenalty is a count register. The primitive \hyphenpenalty is defined in the set tex.

The Primitive \if

The primitive expands the tokens following it until two unexpandable tokens are found. The conditional is true iff the character codes of the two tokens agree.

The formal description of this primitive is the following:
$\langle i f\rangle$

$$
\begin{aligned}
& \rightarrow \quad \text { \if }\left\langle\text { token }_{1}\right\rangle\left\langle\text { token }_{2}\right\rangle\langle\text { true text }\rangle \backslash \text { fi } \\
& \mid \quad \text { if }\left\langle\text { token }_{1}\right\rangle\left\langle\text { token }_{2}\right\rangle\langle\text { true text }\rangle \backslash \text { else }\langle\text { false text }\rangle \backslash \text { fi }
\end{aligned}
$$

Examples：
\if\a\x ok \fi
The primitive \if is defined in the set tex．

The Primitive \ifcase

To be completed．

〈ifcase〉
\rightarrow \ifcase ．．．
The primitive \ifcase is defined in the set tex．
The Primitive \ifcat

To be completed．

〈ifcat〉
\rightarrow \ifcat ．．．
The primitive \ifcat is defined in the set tex．

The Primitive \ifcsname

\ifcsname is not implemented yet．
The primitive \ifcsname is defined in the set etex．

The Primitive \unless

Copied of the eTeX reference．
similar in effect to \unless \ifx \undefined，but does not require \undefined to actually be undefined，since no explicit comparison is made with any particular control sequence．

The formal description of this primitive is the following：
To be completed．

Examples：
\ifdefined $\backslash T E S T N A M E \backslash e l s e ~ n o t \backslash f i ~ d e f i n e d ~$
The primitive \ifdefined is defined in the set etex．

The Primitive \ifdim

To be completed．

The formal description of this primitive is the following：
〈ifdim〉
\rightarrow \ifdim \langle dimen $\rangle\langle o p\rangle\langle$ dimen $\rangle\langle$ true text $\rangle \backslash$ fi
$\mid \quad \backslash i f d i m\langle d i m e n\rangle\langle o p\rangle\langle$ dimen $\rangle\langle$ true text $\rangle \backslash$ else \langle false text $\rangle \backslash$ fi
$\langle o p\rangle$

\rightarrow	$[<]$
\mid	$[=]$
\mid	$[>]$

The primitive $\backslash i f d i m$ is defined in the set tex．

The Primitive \ifeof

This primitive tests for end of file on the given read register．The read register is specified as a（expanded）number．

The formal description of this primitive is the following：
$\langle i f e o f\rangle$
\rightarrow \ifeof \langle number〉〈true text〉 \fi
$\mid \quad \backslash i f e o f\langle n u m b e r\rangle\langle$ true text $\rangle \backslash$ else \langle false text $\rangle \backslash f i$
Examples：

```
\ifeof 3 -E-0-F- \else ready \fi
```

The primitive \ifeof is defined in the set tex．

The Primitive \iffalse

The primitive does not take any further arguments．The conditional is always false． Thus only the else branch is expanded．

The formal description of this primitive is the following：

〈iffalse〉

\rightarrow \iffalse 〈true text〉 \fi
｜\iffalse 〈true text〉\else 〈false text〉 \fi

Examples：

```
\iffalse abc \fi
```

The primitive \iffalse is defined in the set tex．

4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \iffontchar

The primitive \iffontchar can be used to check whether a certain glyph exists in a font．For this purpose it takes a font and the code of a character and performs the test． If the character exists the then branch is expanded otherwise the else branch．

The formal description of this primitive is the following：

〈iffontchar〉

\rightarrow \iffontchar ．．．\langle true text \rangle \fi
｜\iffontchar ．．．\langle true text $\rangle \backslash$ lelse \langle false text $\rangle \backslash$ fi
Examples：

```
\iffontchar abc \fi
```

The primitive \iffontchar is defined in the set etex．

The Primitive \ifhbox

The primitive takes one expanded integer argument．The conditional is true iff the box denoted by the argument is a horizontal box．

The formal description of this primitive is the following：

$\langle i f h b o x\rangle$

\rightarrow \ifhbox \langle number〉〈true text〉 \fi
$\mid \quad \backslash i f h b o x\langle n u m b e r\rangle\langle$ true text $\rangle \backslash e l s e\langle$ false text $\rangle \backslash$ fi
Examples：

```
\ifhbox255 abc \fi
```

```
\ifhbox\count120 abc \fi
```

The primitive \ifhbox is defined in the set tex．

The Primitive \ifhmode

The primitive does not take any further arguments．The conditional is true iff the typesetter is in a horizontal mode．This is either the restricted horizontal vertical mode or the horizontal mode．

The formal description of this primitive is the following：
〈ifhmode〉
\rightarrow \ifhmode 〈true text〉 \fi
｜\ifhmode \langle true text $\rangle \backslash$ lelse \langle false text $\rangle \backslash$ fi
Examples：
\ifhmode abc \fi

The Primitive \ifinner

The primitive does not take any further arguments. The conditional is true iff the typesetter is in an internal mode. This is either the internal vertical mode, the restricted horizontal mode, or the math mode (non-display).

The formal description of this primitive is the following:

〈ifinner〉

```
    \ \ifinner <true text\rangle\fi
    | \ifinner \langletrue text\rangle\else \langlefalse text\rangle\fi
```

Examples:

```
\ifinner abc \fi
```

The primitive \ifinner is defined in the set tex.

The Primitive \ifmmode

The primitive does not take any further arguments. The conditional is true iff the typesetter is in math mode or display math mode.

The formal description of this primitive is the following:

$\langle i f m m o d e\rangle$

```
    \ifmmode <true text\rangle\fi
    | \ifmmode \langletrue text\rangle\else \langlefalse text\rangle\fi
```

Examples:

```
\ifmmode abc \fi
```

The primitive \ifmmode is defined in the set tex.

The Primitive \ifnum

\square
To be completed.

The formal description of this primitive is the following:

```
<ifnum>
    \ifnum <number\rangle\langleop\rangle\langlenumber\rangle\langletrue text\rangle\fi
    | \ifodd <number\rangle\langleop\rangle\langlenumber\rangle\langletrue text\rangle\else \langlefalse text\rangle\fi
<op\rangle
    | [<]
    |=]
    | [>]
```


4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

Examples：
\ifodd $\backslash c o u n t 0$ abc \fi
The primitive \ifnum is defined in the set tex．

The Primitive \ifodd

The primitive takes one expanded integer argument．The conditional is true iff the argument is odd．

The formal description of this primitive is the following：
$\langle i f o d d\rangle$
\rightarrow \ifodd \langle number〉 〈true text〉 \fi
｜\ifodd \langle number〉〈true text〉\else \langle false text〉 \fi
Examples：

```
\ifodd\countO abc \fi
```

The primitive \ifodd is defined in the set tex．

The Primitive \iftrue

The primitive does not take any further arguments．The conditional is always true． Thus only the then branch is expanded．
The formal description of this primitive is the following：

```
<iftrue\rangle
    \ \iftrue <true text\rangle\fi
    | \ifture <true text\rangle\else \langlefalse text\rangle\fi
```

Examples：

```
\iftrue abc \fi
```

The primitive \iftrue is defined in the set tex．

The Primitive \ifvbox

The primitive takes one expanded integer argument．The conditional is true iff the box denoted by the argument is a vertical box．

The formal description of this primitive is the following：

$\langle i f v b o x\rangle$

\rightarrow \ifvbox \langle number $\rangle\langle$ true text $\rangle \backslash$ fi
$\mid \backslash i f v b o x\langle n u m b e r\rangle\langle$ true text $\rangle \backslash$ lse \langle false text $\rangle \backslash$ fi
Examples：

```
\ifvbox255 abc \fi
```

```
\ifvbox\count120 abc \fi
```

The primitive \ifvbox is defined in the set tex.

The Primitive \ifvmode

The primitive does not take any further arguments. The conditional is true iff the typesetter is in a vertical mode. This is either the internal vertical mode or the vertical mode.

The formal description of this primitive is the following:
〈ifvmode〉
\rightarrow \ifvmode \langle true text $\rangle \backslash$ fi
$\mid \quad \backslash i f v m o d e\langle$ true text $\rangle \backslash \mathrm{else}\langle$ false text $\rangle \backslash \mathrm{fi}$
Examples:

```
\ifvmode abc \fi
```

The primitive $\backslash i f$ vmode is defined in the set tex.

The Primitive \ifvoid

The primitive takes one expanded integer argument. The conditional is true iff the box denoted by the argument is void.

The formal description of this primitive is the following:

$\langle i f v o i d\rangle$

```
-> \ifvoid <number\rangle\langletrue text\rangle\fi
```

| \ifvoid \langle number $\rangle\langle$ true text $\rangle \backslash e l s e\langle f a l s e ~ t e x t\rangle \backslash f i$

Examples:

```
\ifvoid255 abc \fi
```

```
\ifvoid\count120 abc \fi
```

The primitive \ifvoid is defined in the set tex.

The Primitive \ifx

To be completed.
The formal description of this primitive is the following:
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

```
\(\langle i f x\rangle\)
    \(\rightarrow\) \ifx \(\left\langle\right.\) token \(\left._{1}\right\rangle\left\langle\right.\) token \(\left._{2}\right\rangle ;\langle\) true text \(\rangle \backslash\) fi
    \(\mid \backslash\) ifx \(\left\langle\right.\) token \(\left._{1}\right\rangle\left\langle\right.\) token \(\left._{2}\right\rangle\langle\) true text \(\rangle \backslash\) lse \(\langle\) false text \(\rangle \backslash\) fi
```

Examples:

```
\ifx\a\x ok \fi
```

The primitive \ifx is defined in the set tex.

The Primitive \ignorespaces

To be completed.

The formal description of this primitive is the following:

```
<ignorespaces>
    \ \ignorespaces
```

Examples:

\ignorespaces

The primitive \ignorespaces is defined in the set tex.

The Prefix Primitive \immediate

To be completed.

The formal description of this primitive is the following:

〈immediate〉

\rightarrow \immediate ...

Examples:

```
\immediate\write1{abc}
```

The primitive \immediate is defined in the set tex.

The Primitive \import

To be completed.

The formal description of this primitive is the following:

\langle import \rangle

\rightarrow \import \langle replacement text〉
Examples:

```
\import{de.dante.dtk}
```

The primitive \import is defined in the set namespace.

The Primitive \indent

> To be completed.

The formal description of this primitive is the following:

```
<indent>
    \indent
```

Examples:
The primitive \indent is defined in the set tex.

The Primitive \input

The primitive \input takes as argument one file name and opens this file for reading. The following tokens are taken from this input stream. Thus the effect is as if the file contents where copied at the place of the primitive.

If the file can not be opened for reading then an error is raised.
The primitive also makes provisions that the information in \inputfilename and \inputlineno are set properly.

Syntax

The formal description of this primitive is the following:

```
<input>
    \ \input <file name\rangle
```


4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

Examples

The traditional version of the file name parsing allows the following syntax:

```
\input file.name
```

If the parsing is not configured to be strict then the following syntax is allowed as well:

```
\input{file.name}
```

The primitive \input is defined in the set tex.

The Primitive \inputlineno

The primitive \inputlineno is an internal integer quantity which expands to the line number of the current input file. This primitive can be used to assign the value to variables or after \the to translate it to tokens.

Syntax

The formal description of this primitive is the following:

```
\(\langle\) inputlineno〉
    \(\rightarrow\) \inputlineno
```


Examples

```
\count1=\inputlineno
```

```
\the\inputlineno
```

The primitive \inputlineno is defined in the set tex.

The Primitive \InputMode

\InputMode is not implemented yet.
The primitive \InputMode is defined in the set omega.

The Primitive \InputTranslation

\InputTranslation is not implemented yet.
The primitive \InputTranslation is defined in the set omega.

The Primitive \insert

To be completed.

The formal description of this primitive is the following:

```
<insert>
    \insert
```

Examples:

```
\insert42{abc}
```

The primitive \insert is defined in the set tex.

The Count Primitive \insertpenalties

\insertpenalties is a count register. The primitive \insertpenalties is defined in the set tex.

The Primitive \interactionmode

To be completed.

Syntax

The formal description of this primitive is the following:
\langle interactionmode〉
\rightarrow \interactionmode

Examples

```
\interactionmode
```

The primitive \interactionmode is defined in the set etex.

The Primitive \interlinepenalties

\interlinepenalties is not implemented yet.
The primitive \interlinepenalties is defined in the set etex.

4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Count Primitive \interlinepenalty

\interlinepenalty is a count register．The primitive \interlinepenalty is defined in the set tex．

The Primitive \javadef

The primitive \javadef attaches a definition to a macro or active character．This is done in a similar way as \def works．The difference is that the definition has to be provided in form of a Java class．

Syntax

The general form of this primitive is

```
〈javadef>
    \ \javadef <control sequence\rangle\langletokens\rangle
```

The \langle control sequence \rangle is any macro or active character．If this token is missing or of the wrong type then an error is raised．

The \langle tokens \rangle is any specification of a list of tokens like a constant list enclosed in braces or a toks register．The value of these tokens are taken and interpreted as the name of a Java class．This class is loaded if needed and instantiated．The instance is bound as code to the 〈control sequence〉．

The following example illustrates the use of this primitive：

```
\javadef\abc{de.dante.extex.interpreter.primitive.Relax}
```

The primitive \javadef is local to the enclosing group as is \def．And similar to \def the modifier $\backslash g l o b a l$ can be used to make the definition in all groups instead of the current group only．This is shown in the following example：

```
\global\javadef\abc{de.dante.extex.interpreter.primitive.Relax}
```

Now we come to the Java side of the definition．The class given as \langle tokens \rangle must imple－ ment the interface＠link de．dante．extex．interpreter．type．Code Code．The easiest way to achieve this is by declaring a class derived from＠link de．dante．extex．interpreter．type．AbstractCode AbstractCode．

```
package my.package;
import de.dante.extex.interpreter.AbstractCode;
import de.dante.extex.interpreter.contect.Context;
import de.dante.extex.interpreter.Flags;
import de.dante.extex.interpreter.TokenSource;
import de.dante.extex.typesetter.Typesetter;
import de.dante.util.GeneralException;
```

```
class MyPrimitive extends AbstractCode {
    public MyPrimitive(final String name) {
        super(name);
        // initialization code --if required
    }
    public boolean execute(final Flags prefix,
                                    final Context context,
                                    final TokenSource source,
                            final Typesetter typesetter
                        ) {
        // implement the execution behaviour here
        return true;
    }
}
```

There is more to say about primitives like how to write expandable primitives or ifs. Those details can be found in section Primitives.

The primitive \javadef is defined in the set $j x$.

The Primitive \javaload

The primitive \javaload loads a java class and invokes its init() method. With this method it is possible to load larger extensions of $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ in one junk. There is no need to declare each single macro with \javadef.

The general form of this primitive is

$\langle j a v a l o a d\rangle$

```
        \ \javaload <tokens\rangle
```

The \langle tokens \rangle is any specification of a list of tokens like a constant list enclosed in braces or a toks register. The value of these tokens are taken and interpreted as the name of a Java class. This class is loaded if needed, instantiated, and its method de.dante.extex.interpreter.context.Context, de.dante.extex.typesetter.Typesetter) init() is invoked. The instantiation requires the empty contructor to be visible.

The following example illustrates the use of this primitive:

```
\javaload{de.dante.extex.extensions.Basic}
```

For the loading of the Java class it is necessary that this Java class implements the interface Loadable.

```
package my.package;
import de.dante.extex.interpreter.contect.Context;
import de.dante.extex.interpreter.primitives.dynamic.java.Loadable;
import de.dante.extex.typesetter.Typesetter;
```


4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

```
import de.dante.util.GeneralException;
class MyModule implements Loadable {
    public MyModule() {
        super();
        // initialization code --if required
    }
    public void init(final Context context,
                        final Typesetter typesetter
                ) throws GeneralException {
        // implement the initialization code here
    }
}
```

The primitive $\backslash j a v a l o a d$ is defined in the set jx ．

The Primitive \jobname

The primitive \jobname expands to the name of the job currently processed．The job name is usually the name of the first input file．If this can not be determined－e．g． because the input is not coming from a file－then the fallback texput is usd as default value．

The formal description of this primitive is the following：
〈jobname〉
\rightarrow \jobname
Examples：

\jobname

The primitive \backslash jobname is defined in the set tex．

The Primitive \kern

This primitive produces a horizontal or vertical kerning．This is a（minor）adjustment of the position．The meaning depends on the current mode of the typesetter．In vertical modes it means a vertival adjustment．Otherwise it means a horizontal adjustment．

The formal description of this primitive is the following：
〈kern〉

$$
\rightarrow \quad \backslash \text { kern }\langle\text { dimen }\rangle
$$

Examples：

```
\kern 12pt
```

```
\kern -3mm
```

```
\kern -\dimen123
```

The primitive \backslash kern is defined in the set tex.

The Count Primitive \language

\language is a count register. The primitive \language is defined in the set tex.

The Primitive \lastbox

To be completed.

The formal description of this primitive is the following:
\langle lastbox \rangle
\rightarrow \lastbox
Examples:

```
\lastbox
```

```
\box1=\lastbox
```

The primitive \lastbox is defined in the set tex.

The Primitive \lastkern

> To be completed.

Examples:

```
\dimen1=\lastkern
```

The primitive \lastkern is defined in the set tex.

The Primitive \lastlinefit

\lastlinefit is not implemented yet.
The primitive \lastlinefit is defined in the set etex.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \lastnodetype

To be completed.

Examples:
Test \the\lastnodetype
The primitive \lastnodetype is defined in the set etex.

The Primitive \lastpenalty

To be completed.

Examples:

```
\count1=\lastpenalty
```

The primitive \lastpenalty is defined in the set tex.

The Glue Primitive \lastskip

\lastskip is a skip register. The primitive \lastskip is defined in the set tex.

The Primitive \lccode

To be completed.

The formal description of this primitive is the following:

```
<lccode\rangle
    \ \lccode \langle...\rangle
```

Examples:

```
    \lccode ...
```

The primitive \lccode is defined in the set tex.

The Primitive \leaders

To be completed．

The formal description of this primitive is the following：
〈leaders〉
\rightarrow \leaders ．．．
Examples：
\leaders\hrul\hfill
The primitive \leaders is defined in the set tex．

The Math Primitive \left

}
To be completed．

Syntax

The formal description of this primitive is the following：
〈left＞
\rightarrow \left．．．

Examples

```
\left(
```

The primitive \left is defined in the set tex．

The Primitive \lefthyphenmin

To be completed．

Syntax

〈lefthyphenmin〉
\rightarrow \lefthyphenmin $=\ldots$

Example:

\lefthyphenmin=3
The primitive \lefthyphenmin is defined in the set tex.

The Glue Primitive \leftskip

$\backslash l e f t s k i p ~ i s ~ a ~ s k i p ~ r e g i s t e r . ~ T h e ~ p r i m i t i v e ~ \ l e f t s k i p ~ i s ~ d e f i n e d ~ i n ~ t h e ~ s e t ~ t e x . ~$

The Math Primitive \leqno

To be completed.

Syntax

The formal description of this primitive is the following:

```
<span\rangle
    \leqno
```


Examples

\leqno

The primitive \backslash leqno is defined in the set tex.

The Primitive \let

To be completed.

The formal description of this primitive is the following:
$\langle l e t\rangle$
\rightarrow let \langle control sequence〉 \langle equals $\rangle\langle$ token \rangle
Examples:

```
\let\a=\b
```

The primitive \backslash let is defined in the set tex.

The Math Primitive \limits

To be completed.

Syntax

The formal description of this primitive is the following:

```
\langlelimits>
    \ \limits
```


Examples

```
\limits
```

The primitive \limits is defined in the set tex.

The Count Primitive \linepenalty

\linepenalty is a count register. The primitive \linepenalty is defined in the set tex.

The Glue Primitive \lineskip

\lineskip is a skip register. The primitive \lineskip is defined in the set tex.

The Dimen Primitive \lineskiplimit

\lineskiplimit is a dimen register. The primitive \lineskiplimit is defined in the set tex.

The Count Primitive \localbrokenpenalty

\localbrokenpenalty is a count register. The primitive \localbrokenpenalty is defined in the set omega.

The Count Primitive \localinterlinepenalty
\localinterlinepenalty is a count register. The primitive \localinterlinepenalty is defined in the set omega.

The Primitive \localleftbox

\localleftbox is not implemented yet.
The primitive \localleftbox is defined in the set omega.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \localrightbox

$\backslash l o c a l r i g h t b o x$ is not implemented yet.
The primitive \localrightbox is defined in the set omega.

The Prefix Primitive \long

To be completed.

The formal description of this primitive is the following:

$$
\xrightarrow{\langle l o n g\rangle} \text { \long ... }
$$

Examples:

```
\long\def#1{--#1--}
```

The primitive \long is defined in the set tex.

The Count Primitive \looseness

$\backslash l o o s e n e s s$ is a count register. The primitive \looseness is defined in the set tex.

The Primitive \lower

To be completed.

The formal description of this primitive is the following:

```
<lower>
    \lower <dimen\rangle\langlebox\rangle
```

Examples:

```
    \lower 2em \hbox{abc}
```

 \lower -1pt \hbox to 120pt \{abc\}
 \lower 2 mm \hbox spread 12pt \{abc\}
 The primitive \lower is defined in the set tex.

The Primitive \lowercase

> To be completed.

The formal description of this primitive is the following:
〈lowercase〉
\rightarrow \lowercase $\langle\ldots\rangle$
Examples:

```
\lowercase ...
```

The primitive \lowercase is defined in the set tex.

The Primitive \mag

```
To be completed.
```


Syntax

The formal description of this primitive is the following:
$\langle m a g\rangle$
\rightarrow \mag

Examples

\count23=-456
The primitive \backslash mag is defined in the set tex.

The Primitive \mark

To be completed.

The formal description of this primitive is the following:
\mark ...
Examples:

```
\mark{abc}
```

The primitive \mark is defined in the set tex.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \marks

```
To be completed.
```

The formal description of this primitive is the following:

\marks ...

Examples:

```
\marks123{abc}
```

The primitive \marks is defined in the set etex.

The Math Primitive \mathaccent

To be completed.

Syntax

The formal description of this primitive is the following:
〈mathaccent>
\rightarrow \mathaccent

Examples

\mathaccent

The primitive \mathaccent is defined in the set tex.

The Math Primitive \mathbin

To be completed.

Syntax

The formal description of this primitive is the following:

```
<mathbin>
    \mathbin
```


Examples

```
\mathbin
```

The primitive \mathbin is defined in the set tex.

The Math Primitive \mathchar

The primitive \mathchar inserts a mathematical character consisting of a math class and a character code inti the current math list. This is supposed to work in math mode only.

To be completed.

Syntax

The formal description of this primitive is the following:
\mathchar ...

Examples

```
\mathchar"041
```

```
\mathchar{ordinary}0 'A
```

The primitive \mathchar is defined in the set tex.

The Math Primitive \mathchardef

To be completed.

Syntax

The formal description of this primitive is the following:
\mathchardef ...

Examples

\mathchardef \alpha ...
The primitive \mathchardef is defined in the set tex.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Math Primitive \mathchoice

To be completed.

Syntax

The formal description of this primitive is the following:

```
<mathchoice\rangle
    \mathchoice ...
```


Examples

```
\mathchoice{d}{t}{s}{ss}
```

The primitive \mathchoice is defined in the set tex.

The Math Primitive \mathclose

To be completed.

Syntax

The formal description of this primitive is the following:
\langle mathclose〉
\rightarrow \mathclose

Examples

\mathclose

The primitive \mathclose is defined in the set tex.

The Math Primitive \mathcode

[^0]
Syntax

The formal description of this primitive is the following:
\mathcode ...

Examples

```
\mathcode ...
```

The primitive \mathcode is defined in the set tex.

The Primitive \mathdir

\backslash mathdir is not implemented yet.
The primitive \mathdir is defined in the set omega.

The Math Primitive \mathinner

```
To be completed.
```


Syntax

The formal description of this primitive is the following:
\langle mathinner \rangle
\rightarrow \mathinner 〈math block〉

Examples

```
\mathinner{a^b}
```

The primitive \mathinner is defined in the set tex.

The Math Primitive \mathop

To be completed.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

Syntax

The formal description of this primitive is the following:

$$
\langle\text { mathop }\rangle
$$

\rightarrow \mathop

Examples

\mathop

The primitive \mathop is defined in the set tex.

The Math Primitive \mathopen

```
To be completed.
```


Syntax

The formal description of this primitive is the following:

```
<mathopen>
    \\mathopen
```


Examples

```
\mathopen
```

The primitive \mathopen is defined in the set tex.

The Math Primitive \mathord

```
To be completed.
```


Syntax

The formal description of this primitive is the following:

```
<mathord>
    \mathord
```


Examples

```
\mathord
```

The primitive \mathord is defined in the set tex.

The Math Primitive \mathpunct

```
To be completed.
```


Syntax

The formal description of this primitive is the following:
\langle mathpunct〉
\rightarrow \mathpunct

Examples

```
\mathpunct
```

The primitive \backslash mathpunct is defined in the set tex.

The Math Primitive \mathrel

To be completed.

Syntax

The formal description of this primitive is the following:

```
<mathrel>
    \mathrel
```


Examples

\mathrel

The primitive \mathrel is defined in the set tex.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Dimen Primitive \mathsurround

\backslash mathsurround is a dimen register. The primitive \mathsurround is defined in the set tex.

The Count Primitive \maxdeadcycles

\backslash maxdeadcycles is a count register. The primitive \backslash maxdeadcycles is defined in the set tex.

The Dimen Primitive \maxdepth

\backslash maxdepth is a dimen register. The primitive \backslash maxdepth is defined in the set tex.

The Primitive \meaning

To be completed.

Syntax

The formal description of this primitive is the following:

\langle meaning〉

\rightarrow \meaning \langle token \rangle

Examples

\meaning a

The primitive \meaning is defined in the set tex. The primitive \medmuskip is defined in the set tex.

The Primitive \message

To be completed.

Syntax

The formal description of this primitive is the following:

```
<message\rangle
    \ \message ...
```


Examples

\message\{Hello World!\}

The primitive \message is defined in the set tex.

The Math Primitive \middle

To be completed.

Syntax

The formal description of this primitive is the following:
$\langle s p a n\rangle$
\rightarrow \middle ...

Examples

\middle

The primitive \backslash middle is defined in the set etex.

The Math Primitive \mkern

```
To be completed.
```


Syntax

The formal description of this primitive is the following:
〈mkern〉
\rightarrow \mkern

Examples

\mkern

The primitive $\backslash m k e r n$ is defined in the set tex.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Count Primitive \month

\backslash month is a count register. The primitive \backslash month is defined in the set tex.

The Primitive \moveleft

To be completed.

The formal description of this primitive is the following:

```
<moveleft>
    \moveleft <dimen\rangle\langlebox\rangle
```

Examples:

```
    \moveleft 2em \hbox{abc}
```

 \moveleft -1pt \hbox to 120pt \{abc\}
 \(\backslash\) moveleft 2 mm \hbox spread 12pt \{abc\}
 The primitive \moveleft is defined in the set tex.

The Primitive \moveright

```
To be completed.
```

The formal description of this primitive is the following:

```
<moveright>
    \\moveright <dimen\rangle\langlebox\rangle
```

The color from the typographic context is taken as foregroud color for the rule. The default color is black.

Examples:
\moveright 2em \hbox\{abc\}
\moveright -1pt \hbox to 120pt \{abc\}
\moveright 2 mm \hbox spread 12pt \{abc\}
The primitive \moveright is defined in the set tex.

The Math Primitive \mskip

To be completed．

Syntax

The formal description of this primitive is the following：

$$
\stackrel{\langle m s k i p\rangle}{\rightarrow} \text { \mskip }
$$

Examples

```
\mskip 12mu plus 3mu minus 4 mu
```

The primitive $\backslash m s k i p$ is defined in the set tex．

The Primitive \muexpr

\backslash muexpr is not implemented yet．
The primitive \backslash muexpr is defined in the set etex．

The Primitive \advance

This primitive implements an assignment．The variable given as next tokens is multiplied by the quantity given after the optional by．

The formal description of this primitive is the following：

```
\(\langle\) multiply〉
    \(\rightarrow\) \multiply 〈multiplyable〉
〈multiplyable〉
〈optional by〉
    \(\rightarrow\) [by]
    | 〈optional spaces〉
```

 \(\rightarrow\langle\) integer variable \(\rangle\langle\) optional by \(\rangle\langle 8\)-bit number \(\rangle\)
 | 〈dimen variable〉 〈optional by〉 〈8-bit number〉
 | \(\langle\) glue variable \(\rangle\langle\) optional by \(\rangle\langle 8\)-bit number \(\rangle\)
 | 〈muglue variable〉 〈optional by〉〈8-bit number〉
 Examples：

```
\multiply\count12 345
```


4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

\multiply \backslash count12 by -345
The primitive \multiply is defined in the set tex．The primitive \muskip is defined in the set tex．

The Primitive \muskipdef

To be completed．

The formal description of this primitive is the following：
\backslash muskipdef \langle control sequence〉 \langle equals〉 $\langle 8$－bit number〉
Examples：
\backslash muskipdef \backslash abc＝45
\muskipdef \abc 33
The primitive \muskipdef is defined in the set tex．

The Primitive \namespace

To be completed．

The formal description of this primitive is the following：
\langle namespace〉
\rightarrow \namespace \langle replacement text \rangle
Examples：
\namespace\｛org．dante．dtk\}
The primitive \namespace is defined in the set namespace．

The Primitive \nativedef

The primitive \nativedef assigns a definition to a macro or active character．This is done in a similar way as \def works．The difference is that the definition has to be provided in form of a Java class which glues in native code．

Syntax

The general form of this primitive is

```
<nativedef>
    \nativedef <control sequence\rangle\langlename\rangle
```

The \langle control sequence \rangle is any macro or active character. If this token is missing or of the wrong type then an error is raised.

The $\langle n a m e\rangle$ is any specification of a list of tokens like a constant list enclosed in braces or a token register. The value of these tokens are taken and resolved via the configuration. This appropriate class is loaded if needed and instantiated. The instance is bound as code to the 〈control sequence〉.

The primitive \javadef is local to the enclosing group as is \def. And similar to \def the modifier $\backslash \mathrm{global}$ can be used to make the definition in all groups instead of the current group only.

The primitive \nativedef is defined in the set native.

The Primitive \nativeload

To be completed.

Syntax

The general form of this primitive is

```
\nativeload>
    \nativeload <type\rangle\langletokens\rangle
```

The primitive \nativeload is defined in the set native.

The Primitive \naturaldir

\backslash naturaldir is not implemented yet.
The primitive \naturaldir is defined in the set omega.

The Count Primitive \newlinechar

\newlinechar is a count register. The primitive \newlinechar is defined in the set tex.

The Primitive \noalign

To be completed.

The formal description of this primitive is the following:

```
<noalign>
    \ \noalign
```

Examples:

```
\cr\noalign
```

The primitive \noalign is defined in the set tex.

\section*{The Primitive
}

```
To be completed.
```

The formal description of this primitive is the following:

$$
\langle\text { noboundary〉 }
$$

$$
\rightarrow \quad \backslash \backslash
$$

Examples:

I\}

The primitive \noboundary is defined in the set tex.

The Primitive \noDefaultInputMode

\backslash noDefaultInputMode is not implemented yet.
The primitive \noDefaultInputMode is defined in the set omega.

The Primitive \noDefaultInputTranslation

\noDefaultInputTranslation is not implemented yet.
The primitive \noDefaultInputTranslation is defined in the set omega.

The Primitive \noDefaultOutputMode

\noDefaultOutputMode is not implemented yet.
The primitive \noDefaultOutputMode is defined in the set omega.

The Primitive \noDefaultOutputTranslation

\backslash noDefaultOutputTranslation is not implemented yet.
The primitive \noDefaultOutputTranslation is defined in the set omega.

The Primitive \noexpand

To be completed.
The formal description of this primitive is the following:
\langle noexpand \rangle
\rightarrow \noexpand
Examples:

\noexpand

The primitive \noexpand is defined in the set tex.

The Primitive \noindent

To be completed.

The formal description of this primitive is the following:
〈noindent〉
\rightarrow \noindent
Examples:

```
\noindent
```

The primitive \noindent is defined in the set tex.

The Math Primitive \nolimits

To be completed.

Syntax

The formal description of this primitive is the following:
\langle nolimits \rangle
\rightarrow \nolimits

Examples

```
\nolimits
```

The primitive \nolimits is defined in the set tex.

The Math Primitive \nonscript

The primitive can be used in math modes only. It cancels following glue if the current style is script style or scriptscript style.

Syntax

The formal description of this primitive is the following:

```
<nonscript>
    \nonscript
```


Examples

```
\nonscript
```

The primitive \backslash nonscript is defined in the set tex.

The Primitive \nonstopmode

This primitive sets the interaction mode to batch mode. In batch mode the processing is terminated if the program needs input from the terminal or n error occurs.

The setting of the interaction mode is an assignment. The mode is always processed globally. This means it does not interact with the group concept.

Syntax

The formal description of this primitive is the following:

```
<nonstopmode>
    \nonstopmode
```


Examples:

\nonstopmode

The primitive \nonstopmode is defined in the set tex.

The Dimen Primitive \nulldelimiterspace

\backslash nulldelimiterspace is a dimen register. The primitive \backslash nulldelimiterspace is defined in the set tex.

The Primitive \nullfont

To be completed.

The formal description of this primitive is the following:
\nullfont
Examples:

```
\font123=\nullfont
```

The primitive \nullfont is defined in the set tex.

The Primitive \nullocplist

\backslash nullocplist is not implemented yet.
The primitive \nullocplist is defined in the set omega.

The Primitive \number

To be completed.

The formal description of this primitive is the following:

```
\number>
    \number \langle\ldots. \
```

Examples:

```
\number ...
```

The primitive \number is defined in the set tex.

The Primitive \numexpr

The primitive \numexpr provides a means to use a inline way of writing mathematical expressions to be evaluated. Mathematical expressions can be evaluated in $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{X}$ using \advance, \multiply, and \divide. Nevertheless those primitives result in an assignment. This is not the case for \numexpr. Here the intermediate results are not stored in count registers but kept internally. Also the application of \afterassignment and \tracingassigns is suppressed.

The mathematical expression to be evaluated can be made up of the basic operations addition $(+)$, subtraction $(-)$, multiplication $(*)$, and division $(/)$. The unary minus can

4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

be used. Parentheses can be used for grouping. Anything which looks like a number can be used as argument. White-space can be used freely without any harm.

The expression is terminated at the first token which can not be part of an expression. For instance a letter may signal the end of the expression. If the expression should terminate without a proper token following it, the token \relax can be used to signal the end of the expression. This \relax token is silently consumed by \numexpr.

The primitive \numexpr can be used in any place where a number is required. This includes assignments to count registers and comparisons.

Syntax

The formal description of this primitive is the following:

```
\(\langle\) numexpr \(\rangle\)
    \(\rightarrow \quad\) \numexpr \(\langle\) expr \(\rangle \backslash r e l a x\)
    \numexpr \(\langle e x p r\rangle\)
\(\langle e x p r\rangle\)
    \(\rightarrow\langle\) number \(\rangle\)
        \(\langle\) operand \(\rangle\)
        \(\langle e x p r\rangle+\langle e x p r\rangle\)
        \(\langle e x p r\rangle-\langle e x p r\rangle\)
        \(\langle\operatorname{expr}\rangle *\langle\operatorname{expr}\rangle\)
        \(\langle e x p r\rangle /\langle e x p r\rangle\)
\(\langle\) operand \(\rangle\)
    \(\rightarrow\langle\) number \(\rangle\)
    \(\mid-\langle e x p r\rangle\)
        ( \(\langle\) expr \(\rangle\) )
```


Examples

\count1=\numexpr $23 \backslash r e l a x$

```
\count1=\numexpr 2 * 3 \relax
```

\count1=\numexpr 2*\count2
\backslash count1=\numexpr $2 *(1+3)$
\backslash count1=\numexpr $2 *-\backslash$ count0
The primitive \numexpr is defined in the set etex.

The Primitive \ocp

\ocp is not implemented yet.
The primitive \ocp is defined in the set omega.

The Primitive \ocplist

\ocplist is not implemented yet.
The primitive \ocplist is defined in the set omega.

The Primitive \odelmiter

\odelmiter is not implemented yet.
The primitive \odelmiter is defined in the set omega.

The Primitive \omathaccent

\omathaccent is not implemented yet. The primitive \omathaccent is defined in the set omega.

The Primitive \omathchar

\omathchar is not implemented yet.
The primitive \omathchar is defined in the set omega.

The Primitive \omathchardef

\omathchardef is not implemented yet. The primitive \omathchardef is defined in the set omega.

The Primitive \omathcode

\omathcode is not implemented yet.
The primitive \omathcode is defined in the set omega.
The Primitive \omathdelcode
\omathdelcode is not implemented yet.
The primitive \omathdelcode is defined in the set omega.

The Primitive \omit

\square
To be completed.

The formal description of this primitive is the following:

```
<omit>
    \omit
```


4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

Examples:
\omit 1
The primitive \omit is defined in the set tex.

The Primitive \openin

The primitive \openin tries to open a file or other named resource for reading. The reference is stored in a read register to be used with \read. If the opening fails then the read register is void. This can be checked with the primitive \ifeof.

The assignment to a read register is local to the current group unless specified differently. If the prefix \global is given then the read register is assigned globally.

The stream should be closed with \closein when not needed any more.

Syntax

The formal description of this primitive is the following:

```
<openin>
    \ <modifier\rangle \openin <8-bit number\rangle\langleequals\rangle\langlefile name\rangle
<modifier>
    ->
    | \global
```


Examples

```
\openin3= abc.def
\read3 to \line
\closein3
```

The primitive \openin is defined in the set tex.

The Primitive \openout

```
To be completed.
```


Syntax

The formal description of this primitive is the following:

```
<openin>
    \ <modifier\rangle \openin <8-bit number\rangle <equals\rangle\langlefile name\rangle
<modifier>
```

```
->
\ \global <modifier>
| \immediate <modifier>
```


Examples

```
\immediate\openout3= abc.def
\write3{Hi there!}
\closeout3
```

The primitive \openout is defined in the set tex.

The Primitive \or

To be completed.

```
\langleor\rangle
    \ \ifcase .. \or ... \fi
```

The primitive \or is defined in the set tex.

The Primitive \oradical

\oradical is not implemented yet.
The primitive \oradical is defined in the set omega.

The Prefix Primitive \outer

To be completed.

The formal description of this primitive is the following:

```
〈outer〉
    \(\rightarrow\) \outer ...
```

Examples:

```
\outer\def#1{--#1--}
```

The primitive \outer is defined in the set tex.

The Toks Primitive \output

\output is a toks register. The primitive \output is defined in the set tex.

4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \OutputMode

\backslash OutputMode is not implemented yet.
The primitive \OutputMode is defined in the set omega.

The Count Primitive \outputpenalty

\outputpenalty is a count register. The primitive \outputpenalty is defined in the set tex.

The Primitive \OutputTranslation

\OutputTranslation is not implemented yet.
The primitive \OutputTranslation is defined in the set omega.

The Math Primitive \over

To be completed.

Syntax

The formal description of this primitive is the following:

$$
\langle o v e r\rangle
$$

\rightarrow... \over ...

Examples

a \over b
The primitive \over is defined in the set tex.

The Dimen Primitive \overfullrule

\overfullrule is a dimen register. The primitive \overfullrule is defined in the set tex.

The Math Primitive \overline

To be completed.

Syntax

The formal description of this primitive is the following:
$\langle s p a n\rangle$
\rightarrow \overline ...

Examples

```
\overline{abc}
```

The primitive \overline is defined in the set tex.

The Primitive \overwithdelims

```
To be completed.
```

The formal description of this primitive is the following:
〈overwithdelims〉

```
->..\\overwithdelims ...
```

Examples:

```
\overwithdelims
```

The primitive \overwithdelims is defined in the set tex.

The Dimen Primitive \pagedepth

\backslash pagedepth is a dimen register. The primitive \backslash pagedepth is defined in the set tex.

The Primitive \pagedir

\backslash pagedir is not implemented yet.
The primitive \backslash pagedir is defined in the set omega.

The Primitive \pagedirHL

\backslash pagedirHL is not implemented yet.
The primitive \pagedirHL is defined in the set omega.

The Primitive \pagedirHR

\backslash pagedirHR is not implemented yet.
The primitive \pagedirHR is defined in the set omega.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \pagediscarts

\backslash pagediscarts is not implemented yet.
The primitive \pagediscarts is defined in the set etex.

The Dimen Primitive \pagefilllstretch

\pagefilllstretch is a dimen register. The primitive \pagefilllstretch is defined in the set tex.

The Dimen Primitive \pagefillstretch

\backslash pagefillstretch is a dimen register. The primitive \pagefillstretch is defined in the set tex.

The Dimen Primitive \pagefilstretch

\pagefilstretch is a dimen register. The primitive \pagefilstretch is defined in the set tex.

The Dimen Primitive \pagegoal

\backslash pagegoal is a dimen register. The primitive \pagegoal is defined in the set tex.

The Dimen Primitive \pageshrink

\pageshrink is a dimen register. The primitive \pageshrink is defined in the set tex.

The Dimen Primitive \pagestretch

\backslash pagestretch is a dimen register. The primitive \backslash pagestretch is defined in the set tex.

The Dimen Primitive \pagetotal

\backslash pagetotal is a dimen register. The primitive \pagetotal is defined in the set tex.

The Primitive \par

The primitive \par signals the end of a paragraph. If $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is in a horizontal mode then the preceding material is typeset and the paragraph is added to the vertical list. $\varepsilon_{\mathcal{X}} \mathrm{T} \mathrm{E}$ goes into a vertical mode afterwards.

If $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ is in a vertical mode then this primitive is simply ignored.

The scanner rules of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ determine that the macro \backslash par is inserted for any number of subsequent empty lines. This means that in a normal text there might be a lot of invocations of \backslash par even if none of them is written explicitly.

Syntax

The formal description of this primitive is the following:
$\langle p a r\rangle$
$\rightarrow \quad \backslash \mathrm{par}$

Examples

```
abc \par def
```

The primitive \backslash par is defined in the set tex.

The Glue Primitive \parfillskip

\parfillskip is a skip register. The primitive \parfillskip is defined in the set tex.

The Dimen Primitive \parindent

\backslash parindent is a dimen register. The primitive \backslash parindent is defined in the set tex.

The Primitive \parshape

The primitive \parshape is a declaration of the shape of the paragraph. With its help it is possible to control the left and right margin of the current paragraph.

The shape of the paragraph is controlled on a line base. For each line the left indentation and the width are given. The first argument of \parshape determines the number of such pairs to follow.

When the paragraph is typeset the lines are indented and adjusted according to the specification given. If there are more lines specified as actually present in the current paragraph then the remaining specifications are discarded at the end of the paragraph. If there are less lines then the last specification is repeated.

If several \parshape declarations are given in one oaragraph then the one is used which is in effect at the end of the paragraph. This means that later declarations overrule earlier ones.

Syntax

The formal description of this primitive is the following:

```
<parshape\rangle
    \ \parshape <8-bit number> ...
```


Examples

```
\parshape 3 20pt \linewidth
    20pt \linewidth
    Opt \linewidth
```

```
\parshape 0
```


\parshape as special integer

\backslash parshape acts as special count register which can be queried. It returns the size of the current parshape specification or 0 if none is present.

Examples

```
\count1=\parshape
```

The primitive \parshape is defined in the set tex.

The Primitive \parshapedimen

The primitive \parshapedimen ...

Syntax

The formal description of this primitive is the following:
〈parshapedimen>
$\rightarrow \quad$ \parshapedimen $\langle 8$-bit number〉

Examples

```
\dimen2=\parshapedimen 3
\dimen2=\parshapedimen -3
```

The primitive \parshapedimen is defined in the set etex.

The Primitive \parshapeindent

The primitive \parshapeindent ...

Syntax

The formal description of this primitive is the following:
〈parshapeindent>
$\rightarrow \quad$ parshapeindent $\langle 8$-bit number〉

Examples

```
\dimen2=\parshapeindent 3
```

\dimen2=\parshapeindent -3

The primitive \parshapeindent is defined in the set etex.

The Primitive \parshapelength

The primitive \parshapelength ...

Syntax

The formal description of this primitive is the following:
\langle parshapelength \rangle
$\rightarrow \quad$ parshapelength $\langle 8$-bit number \rangle

Examples

```
\dimen2=\parshapelength 3
```

\dimen2=\parshapelength -3
The primitive \parshapelength is defined in the set etex.

The Glue Primitive \parskip

\backslash parskip is a skip register. The primitive \parskip is defined in the set tex.
The Primitive \backslash patterns

To be completed.

The formal description of this primitive is the following:

4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

〈patterns〉

\rightarrow \patterns 〈patterns〉
Examples：

```
\patterns{.ach4 .ad4der .af1t}
```

The primitive \backslash patterns is defined in the set tex．

The Count Primitive \pausing

\backslash pausing is a count register．The primitive \pausing is defined in the set tex．

The Count Primitive \pdfadjustspacing

\pdfadjustspacing is a count register．The primitive \pdfadjustspacing is defined in the set pdftex．

The Primitive \pdfannot

$\backslash p d f a n n o t ~ i s ~ n o t ~ i m p l e m e n t e d ~ y e t . ~$
The primitive $\backslash p d f a n n o t$ is defined in the set pdftex．

The Primitive \pdfannotlink

$\backslash p d f a n n o t l i n k$ is not implemented yet．
The primitive \pdfannotlink is defined in the set pdftex．

The Primitive \pdfannottext

$\backslash p d f a n n o t t e x t$ is not implemented yet．
The primitive \pdfannottext is defined in the set pdftex．

The Primitive \pdfcatalog

\pdfcatalog is not implemented yet．
The primitive \pdfcatalog is defined in the set pdftex．

The Count Primitive \pdfcompresslevel

$\backslash p d f$ compresslevel is a count register．The primitive $\backslash p d f c o m p r e s s l e v e l ~ i s ~ d e f i n e d ~$ in the set pdftex．

The Count Primitive \pdfdecimaldigits

 in the set pdftex.

The Primitive \pdfdest

$\backslash p d f d e s t$ is not implemented yet.
The primitive $\backslash p d f d e s t$ is defined in the set pdftex.

The Primitive \pdfendlink

\pdfendlink is not implemented yet.
The primitive \pdfendlink is defined in the set pdftex.

The Primitive \pdfendthread

\pdfendthread is not implemented yet.
The primitive \pdfendthread is defined in the set pdftex.

The Primitive \pdffontname

$\backslash p d f f$ ontname is not implemented yet.

The Primitive \pdffontobjnum

$\backslash p d f f o n t o b j n u m$ is not implemented yet.
The primitive \pdffontobjnum is defined in the set pdftex.

The Dimen Primitive \pdfhorigin

\pdfhorigin is a dimen register. The primitive \pdfhorigin is defined in the set pdftex.

The Primitive \pdfimage

\pdfimage is not implemented yet.
The primitive \pdfimage is defined in the set pdftex.

The Count Primitive \pdfimageresolution

$\backslash p d f i m a g e r e s o l u t i o n ~ i s ~ a ~ c o u n t ~ r e g i s t e r . ~ T h e ~ p r i m i t i v e ~ \ p d f i m a g e r e s o l u t i o n ~ i s ~ d e-~$ fined in the set pdftex.

The Primitive \pdfincludechars

$\backslash p d f i n c l u d e c h a r s$ is not implemented yet.
The primitive \pdfincludechars is defined in the set pdftex.

The Primitive \pdfinfo

$\backslash p d f i n f o$ is not implemented yet.
The primitive \pdfinfo is defined in the set pdftex.

The Primitive \pdflastannot

$\backslash p d f l a s t a n n o t ~ i s ~ n o t ~ i m p l e m e n t e d ~ y e t . ~$
The primitive \pdflastannot is defined in the set pdftex.

The Primitive \pdflastobj

$\backslash p d f l a s t o b j$ is not implemented yet.
The primitive \pdflastobj is defined in the set pdftex.

The Primitive \pdflastxform

\pdflastxform is not implemented yet.
The primitive \pdflastxform is defined in the set pdftex.

The Primitive \pdflastximage

$\backslash p d f l a s t x i m a g e ~ i s ~ n o t ~ i m p l e m e n t e d ~ y e t . ~$
The primitive \pdflastximage is defined in the set pdftex.

The Dimen Primitive \pdflinkmargin

\pdflinkmargin is a dimen register. The primitive \pdflinkmargin is defined in the set pdftex.

The Primitive \pdfliteral

$\backslash p d f l i t e r a l$ is not implemented yet.
The primitive \pdfliteral is defined in the set pdftex.

The Count Primitive $\backslash p d f m o v e c h a r s$

[^1] pdftex.

The Primitive \pdfnames

$\backslash p d f n a m e s$ is not implemented yet.
The primitive \pdfnames is defined in the set pdftex.

The Primitive \pdfobj

$\backslash p d f o b j$ is not implemented yet.
The primitive $\backslash p d f o b j$ is defined in the set pdftex.

The Primitive \pdfoutline

$\backslash p d f o u t l i n e$ is not implemented yet.
The primitive \pdfoutline is defined in the set pdftex.

The Count Primitive \pdfoutput

\backslash pdfoutput is a count register. The primitive $\backslash p d f o u t p u t$ is defined in the set pdftex.

The Primitive \pdfpageattr

$\backslash p d f p a g e a t t r$ is not implemented yet.
The primitive \backslash pdfpageattr is defined in the set pdftex.

The Dimen Primitive \pdfpageheight

$\backslash p d f p a g e h e i g h t$ is a dimen register. The primitive \pdfpageheight is defined in the set pdftex.

The Primitive \pdfpagesattr

$\backslash p d f p a g e s a t t r$ is not implemented yet.
The primitive \pdfpagesattr is defined in the set pdftex.

The Dimen Primitive \pdfpagewidth

\pdfpagewidth is a dimen register. The primitive \pdfpagewidth is defined in the set pdftex.

The Count Primitive \pdfpkresolution

\pdfpkresolution is a count register. The primitive \pdfpkresolution is defined in the set pdftex.

The Primitive \pdfrefobj

$\backslash p d f r e f o b j$ is not implemented yet.
The primitive \backslash pdfrefobj is defined in the set pdftex.

The Primitive \pdfrefxform

$\backslash p d f r e f x f o r m$ is not implemented yet.
The primitive \backslash pdfrefxform is defined in the set pdftex.

The Primitive \pdfrefximage

$\backslash p d f r e f x i m a g e ~ i s ~ n o t ~ i m p l e m e n t e d ~ y e t . ~$
The primitive \pdfrefximage is defined in the set pdftex.

The Primitive \pdfstartlink

$\backslash p d f s t a r t l i n k$ is not implemented yet.
The primitive \pdfstartlink is defined in the set pdftex.

The Primitive \pdftexrevision

\pdftexrevision is not implemented yet.
The primitive \pdftexrevision is defined in the set pdftex.

The Count Primitive \pdftexversion

\pdftexversion is a count register. The primitive \pdftexversion is defined in the set pdftex.

The Primitive \pdfthread

$\backslash p d f t h r e a d$ is not implemented yet.
The primitive \backslash pdfthread is defined in the set pdftex.

The Primitive \pdfthreadhoffset

$\backslash p d f t h r e a d h o f f s e t ~ i s ~ n o t ~ i m p l e m e n t e d ~ y e t . ~$
The primitive \pdfthreadhoffset is defined in the set pdftex.

The Dimen Primitive \pdfthreadmargin

\pdfthreadmargin is a dimen register. The primitive \pdfthreadmargin is defined in the set pdftex.

The Primitive \pdfthreadvoffset

$\backslash p d f t h r e a d v o f f s e t ~ i s ~ n o t ~ i m p l e m e n t e d ~ y e t . ~$
The primitive \pdfthreadvoffset is defined in the set pdftex.

The Dimen Primitive \pdfvorigin

 pdftex.

The Primitive \pdfxform

$\backslash p d f x f o r m$ is not implemented yet.
The primitive $\backslash p d f x f o r m$ is defined in the set pdftex.

The Primitive \pdfximage

$\backslash p d f x i m a g e ~ i s ~ n o t ~ i m p l e m e n t e d ~ y e t . ~$
The primitive \pdfximage is defined in the set pdftex.

The Primitive \penalty

This primitive inserts penalty into the current node list. In vertical mode the page builder is also invoked.

A penalty of 10000 or more will inhibit a break at this position. A penalty of -10000 or less will force a break at this position.

The formal description of this primitive is the following:

```
<penalty>
    \penalty <8-bit number〉
```


Examples:

```
\penalty 123
```

```
\penalty -456
```

```
\penalty -\count254
```

The primitive \backslash penalty is defined in the set tex.

The Primitive \popocplist

\backslash popocplist is not implemented yet.
The primitive \backslash popocplist is defined in the set omega.

4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Count Primitive \postdisplaypenalty

\postdisplaypenalty is a count register. The primitive \postdisplaypenalty is defined in the set tex.

The Primitive \predisplaydirection

\predisplaydirection is not implemented yet.
The primitive \predisplaydirection is defined in the set etex.

The Count Primitive \predisplaypenalty

\predisplaypenalty is a count register. The primitive \predisplaypenalty is defined in the set tex.

The Dimen Primitive \predisplaysize

 set tex.

The Count Primitive \pretolerance

\backslash pretolerance is a count register. The primitive \pretolerance is defined in the set tex.

The Primitive \prevdepth

To be completed.

The formal description of this primitive is the following:

```
<prevdepth>
    \ \prevdepth ...
```

Examples:

```
\prevdepth ...
```

The primitive \backslash prevdepth is defined in the set tex.

The Primitive \prevgraf

To be completed.

The formal description of this primitive is the following:
$\langle p r e v g r a f\rangle$
\rightarrow \prevgraf
Examples:
\prevgraf
The primitive \prevgraf is defined in the set tex.

The Prefix Primitive \protected

To be completed.
The formal description of this primitive is the following:
\langle protected \rangle
\rightarrow \protected

Examples:

\backslash protected\def $\backslash a b c\{123\}$
The primitive \backslash protected is defined in the set etex.

The Primitive \pushocplist

\pushocplist is not implemented yet.
The primitive \pushocplist is defined in the set omega.

The Math Primitive \radical

To be completed.

Syntax

The formal description of this primitive is the following:
\langle radical \rangle
\rightarrow \radical ...

Examples

```
    \radical{a^2 + b^2}
```

The primitive \backslash radical is defined in the set tex.

The Primitive \raise

To be completed.

The formal description of this primitive is the following:

```
<raise\rangle
    \ \raise <dimen\rangle\langlebox\rangle
```

Examples:

```
    \raise 2em \hbox{abc}
```

 \raise - 1 pt \hbox to 120pt \{abc\}
 \raise 2 mm \hbox spread 12pt \{abc\}
 The primitive \backslash raise is defined in the set tex.

The Primitive \read

To be completed.

Syntax

The formal description of this primitive is the following:

```
<read\rangle
    \read \langleread\rangle to \langlecontrol sequence\rangle
```


Examples

```
\openin3= abc.def
\read3 to \line
\closein3
```

The primitive \backslash read is defined in the set tex.

The Primitive \readline

```
To be completed
```


Syntax

The formal description of this primitive is the following:
〈readline〉
\rightarrow \readline \langle read \rangle to \langle control sequence \rangle

Examples

```
\openin3= abc.def
\readline3 to \line
\closein3
```

The primitive \backslash readline is defined in the set etex.

The Primitive \relax

This primitive simply does nothing. It acts as a no-op for the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macro language. \relax is not even expandable. in certain circumstances it might be treated as if it where expandable and the expansion is empty.
\relax sometimes acts as terminating token. For instance when a number is parsed \relax terminates the parsing even if the following token is a digit.

The formal description of this primitive is the following:
$\langle r e l a x\rangle$
\rightarrow \relax

Examples

$\backslash r e l a x$
\the\count123\relax456
The primitive $\backslash r e l a x$ is defined in the set tex.

The Count Primitive \relpenalty

$\backslash r e l p e n a l t y$ is a count register. The primitive $\backslash r e l p e n a l t y ~ i s ~ d e f i n e d ~ i n ~ t h e ~ s e t ~ t e x . ~$
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \removebeforeocplist

\backslash removebeforeocplist is not implemented yet.
The primitive \removebeforeocplist is defined in the set omega.

The Math Primitive \right

}
To be completed.

Syntax

The formal description of this primitive is the following:

```
<span\rangle
    \right ...
```


Examples

```
\right )
```

The primitive \backslash right is defined in the set tex.

The Primitive \righthyphenmin

To be completed.

Syntax

〈righthyphenmin〉
$\rightarrow \quad$ righthyphenmin $=\ldots$

Example:

\righthyphenmin=3

The primitive $\backslash r i g h t h y p h e n m i n ~ i s ~ d e f i n e d ~ i n ~ t h e ~ s e t ~ t e x . ~$

The Glue Primitive \rightskip

\backslash rightskip is a skip register. The primitive \backslash rightskip is defined in the set tex.

The Primitive \romannumeral

The primitive \romannumeral takes a single argument of a number and produces the representation of this number in lower case roman numerals. If the number is less than one than nothing is produced at all.

Syntax

The formal description of this primitive is the following:
\langle romannumeral \rangle
\rightarrow \romannumeral \langle number \rangle

Examples

```
\romannumeral\count1
```

\romannumeral 2004
The primitive \backslash romannumeral is defined in the set tex.

The Primitive \savinghyphcodes

\savinghyphcodes is not implemented yet.
The primitive \savinghyphcodes is defined in the set etex.

The Primitive \savingvdiscarts

\savingvdiscarts is not implemented yet.
The primitive \savingvdiscarts is defined in the set etex.

The Primitive \scantokens

\scantokens is not implemented yet.
The primitive \scantokens is defined in the set etex.

The Font Primitive \scriptfont

\scriptfont is a numbered font register. The primitive \scriptfont is defined in the set tex.

The Font Primitive \scriptscriptfont

\scriptscriptfont is a numbered font register. The primitive \scriptscriptfont is defined in the set tex.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Math Primitive \scriptscriptstyle

```
To be completed.
```


Syntax

The formal description of this primitive is the following:

```
<scriptscriptstyle\rangle
    \ \scriptscriptstyle
```


Examples

```
\scriptscriptstyle
```

The primitive \scriptscriptstyle is defined in the set tex.

The Dimen Primitive \scriptspace

\scriptspace is a dimen register. The primitive \scriptspace is defined in the set tex.

The Math Primitive \scriptstyle

```
To be completed.
```


Syntax

The formal description of this primitive is the following:

```
<scriptstyle>
    \ \scriptstyle
```


Examples

```
\scriptstyle
```

The primitive \scriptstyle is defined in the set tex.

The Primitive \scrollmode

This primitive sets the interaction mode to scroll mode．
The setting of the interaction mode is an assignment．The mode is always processed globally．This means it does not interact with the group concept．

Syntax

The formal description of this primitive is the following：

```
<scrollmode\rangle
    \scrollmode
```


Examples

```
\scrollmode
```

The primitive \backslash scrollmode is defined in the set tex．

The Primitive \setbox

To be completed．

The formal description of this primitive is the following：

```
<setbox>
    \setbox <8-bit number\rangle...
```

Examples：

```
\setbox0\hbox{abc}
```

The primitive \setbox is defined in the set tex．

The Primitive $\backslash \backslash$

To be completed．

The formal description of this primitive is the following：
〈setlanguage〉
\rightarrow \setlanguage 〈number〉
Examples：

```
\setlanguage2
```

The primitive \setlanguage is defined in the set tex．

The Primitive \sfcode

To be completed．

The formal description of this primitive is the following：

```
<sfcode>
        \\sfcode ...
```

Examples：

```
\sfcode ...
```

The primitive \backslash sfcode is defined in the set tex．

The Primitive \shipout

The primitive \shipout takes a box and send the contents of the box to the document writer．

In addition the count register \deadcyles is reset to 0 ．This count register is used to break out of infinite loops when no material is shipped out in the output routine．

Syntax

The formal description of this primitive is the following：
〈shipout〉
$\rightarrow \quad \backslash$ shipout $\langle b o x\rangle$

Examples

\shipout \backslash box255
The primitive \shipout is defined in the set tex．

The Primitive \show

To be completed．

Syntax

The formal description of this primitive is the following：
\langle show \rangle
\rightarrow \show 〈token〉

Examples

Examples:
\backslash show \backslash abc
The primitive \show is defined in the set tex.

The Primitive \showbox

To be completed.

Syntax

The formal description of this primitive is the following:
\langle showbox \rangle
\rightarrow \showbox $\langle 8$-bit number〉

Examples

```
\showbox 1
```

The primitive \showbox is defined in the set tex.

The Count Primitive \showboxbreadth
\showboxbreadth is a count register. The primitive \showboxbreadth is defined in the set tex.

The Count Primitive \showboxdepth

\showboxdepth is a count register. The primitive \showboxdepth is defined in the set tex.

The Primitive \showgroups

\showgroups is not implemented yet.
The primitive \showgroups is defined in the set etex.

The Primitive \showlists

> To be completed.

The formal description of this primitive is the following：
〈showlists〉
\rightarrow \showlists
Examples：
\showlists 1
The primitive \showlists is defined in the set tex．

The Primitive \showthe

To be completed．

The primitive \showthe is defined in the set tex．

The Primitive \showtokens

\showtokens is not implemented yet．
The primitive \showtokens is defined in the set etex．

The Primitive \skewchar

To be completed．

The formal description of this primitive is the following：
\skewchar \langle font $\rangle\langle$ equals $\rangle\langle 8$－bit number〉
Examples：

```
    \skewchar\font=123
```


Incompatibility

The TeXbook gives no indication ow the primitive should react for negative values－ except -1 ．The implementation of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ allows to store and retrieve arbirary negative values．This behaviour of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is not preserved in $\varepsilon_{\mathcal{X}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ ．

The primitive \skewchar is defined in the set tex．The primitive \skip is defined in the set tex．

The Primitive \skipdef

To be completed．

The formal description of this primitive is the following：
\skipdef \langle control sequence〉 〈equals〉 〈8－bit number〉
Examples：

```
\skipdef \abc=45
```

\skipdef\abc 33
The primitive \skipdef is defined in the set tex．

The Primitive \spacefactor

To be completed．

The formal description of this primitive is the following：
\langle spacefactor〉
\rightarrow \spacefactor ．．．
Examples：
\spacefactor ．．．
The primitive \backslash spacefactor is defined in the set tex．

The Glue Primitive \spaceskip

\spaceskip is a skip register．The primitive \spaceskip is defined in the set tex．

The Primitive \span

To be completed．

The formal description of this primitive is the following：
〈span〉
\rightarrow \span

Examples：

```
\span 1
```

The primitive \span is defined in the set tex．

4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \special

This primitive sends a string to the backend driver. The argument is a balanced block of text which is expanded and translated into a string. The string is given in a SpecialNode to the typesetter for passing it down.

The formal description of this primitive is the following:

```
〈special>
    \(\rightarrow \quad\) special \(\langle\) general text \(\rangle\)
```

Examples:

```
\special{hello world}
```

```
\special{ps: \abc}
```

```
\special{ps: \abc}
```

For several backend drivers for $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ a quasi-standard has emerged which uses a prefix ended by a colon to indicate the backend driver the special is targeted at.

The primitive \backslash special is defined in the set tex.

The Primitive \splitbotmark

To be completed.

The formal description of this primitive is the following:
\splitbotmark ...
Examples:

```
\splitbotmark ...
```

The primitive \backslash splitbotmark is defined in the set tex.

The Primitive \splitbotmarks

\splitbotmarks is not implemented yet.
The primitive \splitbotmarks is defined in the set etex.

The Primitive \splitdiscarts

\splitdiscarts is not implemented yet.
The primitive \splitdiscarts is defined in the set etex.

The Primitive \splitfirstmark

To be completed.

The formal description of this primitive is the following:
\splitfirstmark ...
Examples:

```
\splitfirstmark ...
```

The primitive \backslash splitfirstmark is defined in the set tex.

The Primitive \splitfirstmarks

\splitfirstmarks is not implemented yet.
The primitive \splitfirstmarks is defined in the set etex.

The Dimen Primitive \splitmaxdepth

\splitmaxdepth is a dimen register. The primitive \splitmaxdepth is defined in the set tex.

The Glue Primitive \splittopskip

\splittopskip is a skip register. The primitive \splittopskip is defined in the set tex.

The Primitive \string

This primitive takes the next unexpanded token. If this token is a control sequence and no active character - then the value of escapechar followed by the characters from the name of the control sequence. Otherwise it is a single character token containing the character code of the token.

The formal description of this primitive is the following:

```
<string>
    \ \string <token\rangle
```

Examples:

```
\string ...
```

The primitive \string is defined in the set tex.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Glue Primitive \tabskip

\tabskip is a skip register. The primitive \tabskip is defined in the set tex.

The Primitive \textdir

\textdir is not implemented yet.
The primitive \textdir is defined in the set omega.

The Font Primitive \textfont

\textfont is a numbered font register. The primitive \textfont is defined in the set tex.

The Math Primitive \textstyle

To be completed.

Syntax

The formal description of this primitive is the following:

```
〈textstyle〉
    \(\rightarrow\) \textstyle
```


Examples

\textstyle

The primitive \textstyle is defined in the set tex.

The Count Primitive \TeXXeTstate

$\backslash T e X X e T s t a t e$ is a count register. The primitive \backslash TeXXeTstate is defined in the set etex.

The Primitive \the

\square
To be completed.

The formal description of this primitive is the following:
\langle the \rangle
\rightarrow \the \langle internal quantity〉
Examples：
\the\count123
The primitive \the is defined in the set tex．The primitive \thickmuskip is defined in the set tex．The primitive \thinmuskip is defined in the set tex．

The Count Primitive \time

\time is a count register．The primitive \time is defined in the set tex．The primitive \toks is defined in the set tex．

The Primitive \toksdef

To be completed．

The formal description of this primitive is the following：
\toksdef \langle control sequence〉 〈equals〉 〈8－bit number〉
Examples：
\backslash toksdef $\backslash \mathrm{abc}=45$
\toksdef\abc 33
The primitive \backslash toksdef is defined in the set tex．

The Count Primitive \tolerance

\tolerance is a count register．The primitive \tolerance is defined in the set tex．

The Primitive \topmark

To be completed．

The formal description of this primitive is the following：
\topmark ．．．
Examples：

```
\topmark ...
```

The primitive \backslash topmark is defined in the set tex．
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \topmarks

\topmarks is not implemented yet.
The primitive \topmarks is defined in the set etex.

The Glue Primitive \topskip

\topskip is a skip register. The primitive \topskip is defined in the set tex.

The Count Primitive \tracingassigns

\tracingassigns is a count register. The primitive \tracingassigns is defined in the set etex.

The Count Primitive \tracingcommands

\tracingcommands is a count register. The primitive \tracingcommands is defined in the set tex.

The Count Primitive \tracinggroups

\tracinggroups is a count register. The primitive \tracinggroups is defined in the set etex.

The Count Primitive \tracingifs

\tracingifs is a count register. The primitive \tracingifs is defined in the set etex.

The Count Primitive \tracinglostchars

\tracinglostchars is a count register. The primitive \tracinglostchars is defined in the set tex.

The Count Primitive \tracingmacros

\tracingmacros is a count register. The primitive \tracingmacros is defined in the set tex.

The Count Primitive \tracingnesting

\tracingnesting is a count register. The primitive \tracingnesting is defined in the set etex.

The Count Primitive \tracingonline
\tracingonline is a count register. The primitive \tracingonline is defined in the set tex.

The Count Primitive \tracingoutput

\tracingoutput is a count register. The primitive \tracingoutput is defined in the set tex.

The Count Primitive \tracingpages

\tracingpages is a count register. The primitive \tracingpages is defined in the set tex.

The Count Primitive \tracingparagraphs

\tracingparagraphs is a count register. The primitive \tracingparagraphs is defined in the set tex.

The Count Primitive \tracingrestores

\tracingrestores is a count register. The primitive \tracingrestores is defined in the set tex.

The Count Primitive \tracingscantokens

\tracingscantokens is a count register. The primitive \tracingscantokens is defined in the set etex.

The Count Primitive \tracingstats

\tracingstats is a count register. The primitive \tracingstats is defined in the set tex.

The Primitive \uccode

To be completed.

The formal description of this primitive is the following:
$\langle u c c o d e\rangle$
\rightarrow \uccode $\langle\ldots\rangle$

Examples：

```
\uccode ...
```

The primitive \uccode is defined in the set tex．

The Count Primitive \uchyph

\uchyph is a count register．The primitive \uchyph is defined in the set tex．

The Math Primitive \underline

To be completed．

Syntax

The formal description of this primitive is the following：

$$
\langle\text { span }\rangle
$$

\rightarrow \underline ．．．

Examples

```
    \underline{abc}
```

The primitive \underline is defined in the set tex．

The Primitive \unexpanded

\unexpanded is not implemented yet．
The primitive \unexpanded is defined in the set etex．

The Primitive \unhbox

To be completed．

The formal description of this primitive is the following：

```
〈unhbox〉
        \(\rightarrow\) \unhbox \(\langle 8\)-bit number〉
```

 Examples:
 \unhbox42
 The primitive \unhbox is defined in the set tex．

The Primitive \unhcopy

To be completed．

The formal description of this primitive is the following：
〈unhcopy〉
\rightarrow \unhcopy 〈8－bit number〉
Examples：
\unhcopy42
The primitive \unhcopy is defined in the set tex．

The Primitive \unkern

The formal description of this primitive is the following：

```
<unkern>
    \ \unkern
```

Examples：

```
\unkern
```

The primitive \unkern is defined in the set tex．

The Primitive \unless

Copied of the $\varepsilon-T_{E} X$ reference．

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ has，by design，a rather sparse set of conditional primitives：\ifeof，\ifodd， \ifvoid，etc．，have no complementary counterparts．Whilst this normally poses no problems since each accepts both a \then（implicit）and an \else（explicit）part，they fall down when used as the final \if．．．of a \loop ．．．\if ．．．\repeat construct， since no \else is allowed after the final \if．．．．\unless allows the sense of all Boolean conditionals to be inverted，and thus（for example）\unless \ifeof yields true iff end－ of－file has not yet been reached．

The formal description of this primitive is the following：
To be completed．

Examples：

\unless\if\x\y not ok \fi
The primitive \unless is defined in the set etex．
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \unnaturaldir

\unnaturaldir is not implemented yet.
The primitive \unnaturaldir is defined in the set omega.

The Primitive \unpenalty

The formal description of this primitive is the following:
〈unpenalty〉
\rightarrow \unpenalty
Examples:
\unpenalty
The primitive \unpenalty is defined in the set tex.

The Primitive \unskip

The formal description of this primitive is the following:

```
<unskip\rangle
    \ \unskip
```

Examples:

```
    \unskip
```

The primitive \unskip is defined in the set tex.

The Primitive \unvbox

```
To be completed.
```

The formal description of this primitive is the following:

```
<unvbox\rangle
    \ \unvbox <8-bit number\rangle
```

Examples:

```
\unvbox42
```

The primitive \unvbox is defined in the set tex.

The Primitive \unvcopy

To be completed．

The formal description of this primitive is the following：
〈unvcopy〉

```
\unvcopy <8-bit number〉
```

Examples：
\unvcopy42
The primitive \unvcopy is defined in the set tex．

The Primitive \uppercase

To be completed．

The formal description of this primitive is the following：

〈uppercase〉

\rightarrow \uppercase $\langle\ldots\rangle$
Examples：

```
\uppercase ...
```

The primitive \uppercase is defined in the set tex．

The Primitive \vadjust

To be completed．

The formal description of this primitive is the following：
〈vadjust＞
\rightarrow \vadjust ．．．
Examples：

```
\vadjust{\kern2pt}
```

The primitive \vadjust is defined in the set tex．

4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \valign

To be completed．

The formal description of this primitive is the following：

```
<valign>
    \ \valign
```

Examples：

```
    \valign
```

The primitive \valign is defined in the set tex．

The Count Primitive \vbadness

\vbadness is a count register．The primitive \vbadness is defined in the set tex．

The Primitive \vbox

To be completed．

The contents of the toks register \everyvbox is inserted at the beginning of the vertical material of the box．
The formal description of this primitive is the following：
$\langle v b o x\rangle$
\rightarrow \vbox \langle box specification $\rangle\{$ vertical material \rangle \｛ \langle box specification \rangle
｜to 〈rule dimension〉
｜spread 〈rule dimension〉
Examples：

```
\vbox{abc}
```

```
\vbox to 120pt{abc}
```

```
\vbox spread 12pt{abc}
```


The Tokens Parameter \everyvbox

The tokens parameter is used in /vbox. The tokens contained are inserted at the beginnig of the vertical material of the vbox.

The primitive \vbox is defined in the set tex.

The Math Primitive \vcenter

To be completed.

Syntax

The formal description of this primitive is the following:
$\langle v c e n t e r\rangle$
\rightarrow \vcenter ...

Examples

```
\vcenter
```

The primitive \vcenter is defined in the set tex.

The Primitive \vfil

To be completed.

The formal description of this primitive is the following:
$\langle v i\rangle$
\rightarrow \vfi

Examples:

```
\vfi
```

The primitive \vfi is defined in the set omega.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Primitive \vfil

To be completed.

The formal description of this primitive is the following:
$\langle v i l\rangle$
\rightarrow \vfil
Examples:
\vfil
The primitive \vfil is defined in the set tex.

The Primitive \vfill

To be completed.

The formal description of this primitive is the following:
$\langle v f i l l\rangle$
\rightarrow \vfill
Examples:
\vfill
The primitive \vfill is defined in the set tex.

The Primitive \vfilneg

To be completed.

The formal description of this primitive is the following:

```
<vfilneg\rangle
    \ \vfilneg
```

Examples:

```
\vfilneg
```

The primitive \vfilneg is defined in the set tex.

The Dimen Primitive \vfuzz

$\backslash v f u z z$ is a dimen register．The primitive $\backslash v f u z z$ is defined in the set tex．

The Dimen Primitive \voffset

\voffset is a dimen register．The primitive \voffset is defined in the set tex．

The Primitive \vrule

This primitive produces a vertical rule．This is a rectangular area of specified dimensions． If not overwritten the height and depth are 0pt and the width is $0.4 \mathrm{pt}(26214 \mathrm{sp}$ ）．

The formal description of this primitive is the following：

```
〈vrule〉
    \(\rightarrow\) \vrule〈rule specification〉
\(\langle\) rule specification〉
    \(\rightarrow\) 〈optional spaces〉
    | 〈rule dimension〉〈rule specification〉
\(\langle\) rule dimension \(\rangle\)
    \(\rightarrow\) width \(\langle\) dimen \(\rangle\)
    | height \(\langle\) dimen \(\rangle\)
    | depth \(\langle\) dimen \(\rangle\)
```

The color from the typographic context is taken as foregroud color for the rule．The default color is black．

Examples：
\vrule
\vrule height 2pt
\vrule width 2pt depth 3mm height \dimen4
The primitive \vrule is defined in the set tex．

The Dimen Primitive \vsize

\vsize is a dimen register．The primitive \vsize is defined in the set tex．

The Primitive \vskip

To be completed．

The formal description of this primitive is the following：

4．The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

〈vskip〉
\rightarrow \vskip 〈Glue〉

Examples：
\vskip 1em plus 1 pt minus 1 pt
The primitive \vskip is defined in the set tex．

The Primitive \vsplit

To be completed．

The formal description of this primitive is the following：

```
<vsplit>
    \ \vsplit
```

Examples：

```
\vsplit ...
```

The primitive \vsplit is defined in the set tex．

The Primitive \vss

To be completed．

The formal description of this primitive is the following：
$\langle v s s\rangle$
\rightarrow \vss

Examples：
\vss
The primitive \vss is defined in the set tex．

The Primitive \vtop

To be completed．

The contents of the toks register \everyvbox is inserted at the beginning of the vertical material of the box．

The formal description of this primitive is the following：
$\langle v t o p\rangle$
\rightarrow \vtop 〈box specification〉 \｛ 〈vertical material〉 \｛
〈box specification〉
｜to 〈rule dimension〉
｜spread 〈rule dimension〉
Examples：

```
\vtop{abc}
```

```
\vtop to 120pt{abc}
```

\vtop spread 12pt\{abc\}

The primitive \vtop is defined in the set tex．

The Primitive \wd

To be completed．

The formal description of this primitive is the following：
$\langle w d\rangle$
$\rightarrow \quad \backslash \mathrm{wd}\langle 8$－bit number〉 〈equals〉〈dimen〉
Examples：
\wd42
The primitive \wd is defined in the set tex．

The Primitive \widowpenalties

\widowpenalties is not implemented yet．
The primitive \widowpenalties is defined in the set etex．
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

The Count Primitive \widowpenalty

\widowpenalty is a count register. The primitive \widowpenalty is defined in the set tex.

The Primitive \write

To be completed.

Syntax

Examples

```
\immediate\openout3= abc.def
\write3{Hi there!}
\closeout3
```

The primitive \write is defined in the set tex.

The Primitive \xdef

```
To be completed.
```

The formal description of this primitive is the following:

```
<xdef\rangle
-> \langleprefix\rangle\xdef <control sequence\rangle <parameter text\rangle { \langlereplacement text\rangle}
<prefix>
| \global <prefix\rangle
\long <prefix\rangle
    \outer <prefix\rangle
```

Examples:

```
\xdef#1{--#1--}
```

The primitive \backslash xdef is defined in the set tex.

The Primitive \xleaders

To be completed.

The formal description of this primitive is the following:
$\langle x l e a d e r s\rangle$
\rightarrow \xleaders ...
Examples:
$\backslash x l e a d e r s \backslash h r u l \backslash h f i l l$
The primitive $\backslash x l e a d e r s$ is defined in the set tex.

The Glue Primitive \xspaceskip

\xspaceskip is a skip register. The primitive \xspaceskip is defined in the set tex.

The Count Primitive \year

\year is a count register. The primitive \year is defined in the set tex.
4. The Macro Language of $\varepsilon_{\mathcal{X}} T_{E} X$

A.1. GNU Free Documentation License

Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a man ual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free soft ware needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this Li cense is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND
 DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is admember of "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or or of legal, commercial, philosoph

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Tranparent. An image format is not Transpa raif if for any substantial is er the is "Transparent" is calle "Opaqu". copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, ${ }^{I A} T_{E} \mathrm{X}$ input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "His-
tory".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not whatsoever to those of this License. You may not reading or further copying of the copies you make reading or further copying of the copies you make
or distribute. However, you may accept compenor distribute. However, you may accept compen-
sation in exchange for copies. If you distribute sation in exchange for copies. If you distribute
a large enough number of copies you must also a large enough number of copies
follow the conditions in section 3.
follow the conditions in section 3 .
You may also lend copies, under the same onditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100 , and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: FrontCover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using pubic has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at

A. Licenses

the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for public ac cess to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section You may omit a network York that was published at least four ers years before the Document itself, or if
the original publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new frontmatter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other sec tion titles.

You may add a section Entitled "Endorsements', provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may half of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified ver sions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy If there are multiple Invariant Sections with the same name but different contents, make the title
of each such section unique by adding at the end of it, in parentheses, the name of the original au thor or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "'Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH

INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. original versions those notices and disclaimers. and the orisinal version of this License or a notice ard lislaime the in in

If a ser, the origina version will
If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro vided for under this License. Any other attempt to copy, modify, sublicense or distribute the Doc ument is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses ter minated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS

 LICENSEThe Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distin guishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the docu ment and put the following copyright and license notices just after the title page:
Copyright ©YEAR YOUR
NAME.
Permission is granted to
copy, distribute and/or mod-
ify this document under the
terms of the GNU Free Doc-
umentation License, Version
1.2 or any later version pub-
lished by the Free Software
Foundation; with no Invari-
ant Sections, no Front-Cover
Texts, and no Back-Cover
Texts. A copy of the license
is included in the section en-
titled "GNU Free Documen-
tation License".
you have Invariant Sections, Front-
"with...Texts." line with this
with the Invariant Sections being LIST THEIR TITLES with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, Texts, or some other combination of the three, tion.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

A.2. GNU Library General Public License

Version 2, June 1991

Copyright (c) 1991 Free Software Foundation Inc. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA Everyone is permitted to copy and distribute verbatim copies of this license doc ument, but changing it is not allowed.
[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it By contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change free software-to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foundation software, and to any other libraries whose authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public ferring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link a program with the library, you must provide complete object files to the recipients so that they can relink them with the library, after making changes to the library and recompiling it. And you must show them these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the library.

Also, for each distributor's protection, we want to make certain that everyone understands
that there is no warranty for this free library. If the library is modified by someone else and passed on, we want its recipients to know that what they have is not the original version, so that any probems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that companies distributing free software will individually obtain patent licenses, thus in effect transforming the program into propri etary software. To prevent this, we have made clear that any patent must be licensed for everyone's free use or not licensed at all.

Most GNU software, including some libraries is covered by the ordinary GNU General Public License, which was designed for utility programs This license, the GNU Library General Public License, applies to certain designated libraries. This license is quite different from the ordinary one; be sure to read it in full, and don't assume that anything in it is the same as in the ordinary license

The reason we have a separate public license for some libraries is that they blur the distinction we usually make between modifying or adding to a program and simply using it. Linking a program with a library, without changing the library is in some sense simply using the library, and is analogous to running a utility program or application program. However, in a textual and legal sense, the linked executable is a combined work, a derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively promote software sharing, because most developers did not use the libraries. We concluded that weaker conditions might promot sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit from the free status of the libraries themselves. This Library General Public License is intended to permit developers of non-free pro grams to use free libraries, while preserving your freedom as a user of such programs to chang the free libraries that are incorporated in them (We have not seen how to achieve this as regards changes in header files, but we have achieved it as regards changes in the actual functions of the Library.) The hope is that this will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a "work based on the library" and a "work that uses the library". The former contains code derived from
the library, while the latter only works together with the library.

Note that it is possible for a library to be covred by the ordinary General Public License rather than by this special one.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright holder or other authorized party saying it may be distributed under the terms of this Library General Public License (also called "this License'). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these terms. A "work based on the Library" means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for making modifications to it. For a library, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the Library (independent of
the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility, other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains meaningful. (For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application. Therefore, Subsection 2d requires that any applicationsupplied function or table used by this function must be optional: if the application does not supply it, the square root not supply it, the square root
function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete you accompany it with the complete corresponding machine-readable source
code, which must be distributed under code, which must be distributed under
the terms of Sections 1 and 2 above on the terms of Sections 1 and 2 above on
a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked with it, is called a "work that uses the Library". Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library creates an executable that is a derivative of the Li brary (because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore covered by this License. Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file that is part of the Library, the object code for the work may be a derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regard less of whether it is legally a derivative less of whether it is legally a derivative work. (Executables containing this obwill still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also compile or link a "work that uses the Library" with the Library to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this License. You must supply a copy of this License. must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these things:
a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the comthe Library, with the complete machine-readable "work
that uses the Library", as obthat uses the Library", as object code and/or source code, so that the user can mod-
ify the Library and then reify the Library and then re-
link to produce a modified exlink to produce a modified ex-
ecutable containing the modiecutable containing the modi-
fied Library. (It is understood fied Library. (It is understood
that the user who changes the that the user who changes
contents of definitions files in the Library will not necessarily be able to recompile the application to use the modified definitions.)
b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.
c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above specified materials from the same place.
d) Verify that the user has already received a copy of these materials or that you have al ready sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include any data and utility programs needed for reproducing the executable from it. However, as a specia exception, the source code distributed need not include anything that is nor mally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the operating sys em. Such a contradiction means you cannot use both them and the Library together in an executable that you dis tribute.
7. You may place library facilities that are a work based on the Library side-by side in a single library together with other library facilities not covered by this License, and distribute such a combined library, provided that the sepa rate distribution of the work based on the Library and of the other library fa cilities is otherwise permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities. This must be distributed under the terms of the Sections above.
b) Give prominent notice with the combined library of the fact that part of is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work
8. You may not copy, modify, sublicense link with, or distribute the Library ex cept as expressly provided under this Li cense. Any attempt otherwise to copy, modify, sublicense, link with, or dis tribute the Library is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
9. You are not required to accept this Li cense, since you have not signed it However, nothing else grants you permission to modify or distribute the Li brary or its derivative works. These ac tions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your acceptance of this Licens to do so, and all its terms and condi tions for copying, distributing or modifying the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the Library) the recipient automatically receives a license from the original licensor to copy,
distribute, link with or modify the Li brary subject to these terms and con ditions. You may not impose any fur ther restrictions on the recipients' exer cise of the rights granted herein. You are not responsible for enforcing com pliance by third parties to this License.
11. If, as a consequence of a court judg ment or allegation of patent infringement or for any other reason (not lim ited to patent issues), conditions are imposed on you (whether by court or der, agreement or otherwise) that con tradict the conditions of this License, hey do not excuse you from the con they do not excuse you from the con ditions of this License. from you cannot distribute so as to satisfy simultanecense and any other pertinent obliga tions, then as a consequence you ma not distribute the Library at all. Fo example, if a patent license would no permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply, and the section as a whole is intended to apply in other circumstances.
t is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of pro tecting the integrity of the free soft ware distribution system which is im plemented by public license practices Many people have made generous con tributions to the wide range of software distributed through that system in re liance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribut software through any other system and a licensee cannot impose that choice.

This section is intended to make thor oughly clear what is believed to be a consequence of the rest of this License.
2. If the distribution and/or use of the Li brary is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Library under this Li cense may add an explicit geographical distribution limitation excluding those countries, so that distribution is per mitted only in or among countries no thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.
13. The Free Software Foundation may publish revised and/or new versions of the Library General Public License from time to time. Such new versions will be similar in spirit to the present version but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If by the Free Software Foundation. If the Library does not specify a license version number, you may choose any
version ever published by the Free Softversion ever publi
ware Foundation.
14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make ware Foundation; we sometimes make be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY TO THE EXTENT PER BRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PAR HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MOD IFY AND IOR REDISTRIBUTE THE FIBRARY AS PERMITTED ABOVE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
A.3. The License for Avalon

A. Licenses

The Apache Software License, Version 1.1
 Copyright (c) 1997-2003 The Apache Software Foundation. All rights reserved.
 Redistribution and use in source and binary forms, with or without modifica- tion, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately this acknowledgment may ap nately, the software itself if and wher ever such third-party acknowledgments normally appear.
4. The names "Jakarta", "Apache Avalon", "Avalon Excalibur", "Avalon Framework" and "Apache Software Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact apache@apache.org
5.

Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE FOUBLE FOR ANY DIRECT INDIRECT INC LIABLE FOR ANY DIRECT, INDIRECT, INCI DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLU-DING, BUT NOT LIMITED TO, PROCUREMENT OF SUB STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software Foundation and was originally created by Stefano Mazzocchi <stefano@apache.org $>$. For more information on the Apache Software Foundation, please see <http: //www. apache.org/>.

A.4. ICU4J license - ICU4J 1.3.1 and later

Copyright and Permission Notice

Copyright (C) 1995-2001 International Business Machines Corporation and others

All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice appear in all copies
of the Software and that both the above copyright notice(s) and this permission notice appear in supporting documentation

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING

FROM LOSS OF USE, DATA OR PROFITS WHETHER IN AN ACTION OF CONTRACT NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.

All trademarks and registered trademarks mentioned herein are the property of their respective owners.

A.5. License for PDFBox

Copyright (C) 2003-2005, www.pdfbox.org All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of pdfbox; nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ARISING IN ANY WAY OUT OF THE USE OF POSSIBILITY OF SUCH DAMAGE.

Index

A

\abovedisplayshortskip．．．．．．．．．．19， 31
\abovedisplayskip．．．．．．．．．．．．．．19， 31
〈abovewithdelims〉．．．．．．．．．．．．．．．．．．．．．．． 31
\abovewithdelims．．．．．．．．．．．．．．．．．．19， 31
〈accent〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 31
\accent．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．19， 32
\addafterocplist．．．．．．．．．．．．．．．．．．18， 32
\addbeforeocplist．．．．．．．．．．．．．．18， 32
\adjdemerits．．．．．．．．．．．．．．．．．．．．．．．19， 32
〈advancable〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 32
〈advance〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 32
\advance．．．．．．．．．．．．．．．．．．．．．．．．．．．．．19， 32
〈afterassignment〉．．．．．．．．．．．．．．．．．．．．．．．． 33
\afterassignment．．．．．．．．．．．．．．．．．19， 33
〈aftergroup〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 33
\aftergroup ．．．．．．．．．．．．．．．．．．．．．．．．．19， 33
〈atop〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 34
\atop．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．19， 34
〈atopwithdelims〉．．．．．．．．．．．．．．．．．．．．．．．．． 34
\atopwithdelims．．．．．．．．．．．．．．．．．．．19， 34

B

＜badness＞	
\backslash badness	19， 34
\backslash baselineskip	19， 35
batchmode	13， 23
〈batchmode〉	35
\backslash batchmode	19， 35
〈 begingroup〉	35
\begingroup	19， 35

\beginL．．．．．．．．．．．．．．．．．．．．．．．．．17， 36	\currentgrouptype ．．．．．．．．．．．．．17， 43
\beginR．．．．．．．．．．．．．．．．．．．．．．．．．17， 36	\currentifbranch．．．．．．．．．．．．．．．17， 44
\belowdisplayshortskip．．．．．．．19， 36	\currentiflevel．．．．．．．．．．．．．．．．17， 44
\belowdisplayskip．．．．．．．．．．．．19， 36	\currentiftype．．．．．．．．．．．．．．．．．17， 44
\binoppenalty．．．．．．．．．．．．．．．．．．．19， 36	CVS．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 8
\botmark．．．．．．．．．．．．．．．．．．．．．．．．． 19,36	
\botmarks．．．．．．．．．．．．．．．．．．．．．．．．．17， 36 $\langle b o x\rangle \ldots \ldots . .27,37,92,102,128,134$	D
\box．．．．．．．．．．．．．．．．．．．．．．．．．．．．19， 37	\day．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．19， 44
〈box register name〉 ．．．．．．．．．．．．．． 27	\deadcycles．．．．．．．．．．．．．．．．．．．．．19， 44
〈box specification〉．．．．68，69，148， 153	－debug．．．．．．．．．．．．．．．．．．．．．．．．． 22
\boxmaxdepth．．．．．．．．．．．．．．．．．．．．19， 37	〈def〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 44
\brokenpenalty．．．．．．．．．．．．．．．．．．19， 37	\def．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．19， 44
	\defaulthyphenchar．．．．．．．．．．．．19， 45
C	\DefaultInputMode．．．．．．．．．．．．．18， 45
	\DefaultInputTranslation．．．．18， 45
〈catcode〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 38	\DefaultOutputMode ．．．．．．．．．．． 18,45
\catcode．．．．．．．．．．．．．．．．．．．．．．．．．19， 38	\DefaultOutputTranslation．．．18， 45
＜char〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 39	\defaultskewchar．．．．．．．．．．．．．．19， 45
\char．．．．．．．．．．．．．．．．．．．．．．．．．．．． 19,39	〈delcode〉．．．．．．．．．．．．．．．．．．．．．．．． 46.47
＜chardef〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 39	\delcode．．．．．．．．．．．．．．．．．．．．．．．．．． 19,46
\chardef．．．．．．．．．．．．．．．．．．．．．．．．．19， 39	〈delimiter〉．．．．．．．．．．．．．．．．．．．．．．．．．．．． 47
〈cleaders〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 39	\delimiter．．．．．．．．．．．．．．．．．．．．．．19， 47
\cleaders．．．．．．．．．．．．．．．．．．．．．．．．19， 39	\delimiterfactor．．．．．．．．．．．．．．．19， 47
\clearocplists．．．．．．．．．．．．．．．．．． 18,40	\delimitershortfall．．．．．．．．．．．19， 47
〈closein〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 40	\detokenize．．．．．．．．．．．．．．．．．．．17， 47
\closein．．．．．．．．．．．．．．．．．．．．．．．．．19， 40	〈dimen〉．．．．．．．28，32，47，49，52，64，
〈closeout〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 40	71，72，75，86，92，102，128，
\closeout．．．．．．．．．．．．．．．．．．．．．．．． 19,40	151， 153
\clubpenalties．．．．．．．．．．．．．．．．．．17， 41	\dimen．．．．．．．．．．．．．．．．．．．．．．．．．．．19， 48
\clubpenalty．．．．．．．．．．．．．．．．．．．．．19， 41	〈dimen variable〉．．．．．．．．．．32，51， 103
－configuration ．．．．．．．．．．．．．．．．．．．．． 21	〈dimendef〉．．．．．．．．．．．．．．．．．．．．．．．．．． 48
〈control sequence〉 ．．．．．．．．．28，39，42，	\dimendef．．．．．．．．．．．．．．．．．．．．．．．19， 48
44，48，54，59，61，64，65，84，	〈dimenexpr〉．．．．．．．．．．．．．．．．．．．．．．．．． 49
$90,104,105,128,129,137$	\dimenexpr．．．．．．．．．．．．．．．．．．．．．．．．．17， 49
〈copy〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 41	\discretionary．．．．．．．．．．．．．．．．．．．19， 50
\copy．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．19， 41	\displayindent．．．．．．．．．．．．．．．．．． 19,50
－copyright．．．．．．．．．．．．．．．．．．．．．．．．． 21	〈displaylimits〉．．．．．．．．．．．．．．．．．．．．．．．． 50
〈count〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 41	\displaylimits．．．．．．．．．．．．．．．．． 19,50
\count．．．．．．．．．．．．．．．．．．．．．．．．．．． 19,41	〈displaystyle〉．．．．．．．．．．．．．．．．．．．．．．．．． 51
〈countdef〉．．．．．．．．．．．．．．．．．．．．．．．．．．． 42	\displaystyle．．．．．．．．．．．．．．．．．19， 51
\countdef．．．．．．．．．．．．．．．．．．．．．．．．19， 42	\displaywidowpenalties．．．．．．．17， 51
〈cr〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 42	\displaywidowpenalty．．．．．．．．．19， 51
\cr．．．．．．．．．．．．．．．．．．．．．．．．．．．．．19， 42	\displaywidth．．．．．．．．．．．．．．．．．19， 51
〈crcr＞．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 42	〈dividable〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 51
\crcr．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 19,42	〈divide〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 51
〈csname〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 43	\divide．．．．．．．．．．．．．．．．．．．．．．．．． 19,52
\csname．．．．．．．．．．．．．．．．．．．．．．．．．．．．．19， 43	\doublehyphendemerits．．．．．．．．19， 52
CTAN．．．．．．．．．．．．．．．．．．．．．．．．．． 7	〈dp〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 52
〈currentgrouplevel〉 ．．．．．．．．．．．．．． 43	\dp．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．19， 53
\currentgrouplevel．．．．．．．．．．．．17， 43	〈dump＞．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 53

Index

$\langle i f v b o x\rangle$	
\ifvbox．	19， 79
〈ifumode〉	
\ifvmode	19， 79
〈ifvoid〉	79
\ifvoid	19， 79
$\langle i f x\rangle$	80
\ifx	19， 80
〈ignorespaces〉	80
\ignorespaces	19， 80
〈immediate〉	80
\backslash immediate	19， 80
〈import〉	81
\import	18， 81
〈indent〉	81
\backslash indent	19， 81
－ini	22
initTE ${ }_{\text {E }} \mathrm{X}$	22
〈input〉	81
\backslash input	19， 82
〈inputlineno〉	82
\inputlineno	19，82
\InputMode	18， 82
\InputTranslation	18， 82
〈insert \rangle ．	83
\insert．	19， 83
\insertpenalties	19， 83
installation script	10
installer	8－10
building	10
language	
〈integer variable〉	51，103
－interaction	23
〈interactionmode〉	83
\interactionmode．	17， 83
\interlinepenalties	17， 83
\interlinepenalty	19， 84
〈internal quantity〉．	141
〈italic correction〉	

J

Java．．．．．．．．．．．．．．．．．．．．．．．．．．．7，9， 24
\langle javadef〉．．．．．．．．．．．．．．．．．．．．．．． 84
\javadef．．．．．．．．．．．．．．．．．．．．．．．．18， 85
\langle javaload〉．．．．．．．．．．．．．．．．．．．．．．．．．．． 85
\javaload．．．．．．．．．．．．．．．．．．．．．．．．．18， 86
－job－name ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 23

〈jobname〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 86
\jobname．．．．．．．．．．．．．．．．．．．．．．．．．19， 86

K

〈kern＞	86
\kern	19， 87
$\langle k e y\rangle$ ．	

L

language	
installer	
－language	23
\backslash language	19， 87
〈lastbox〉．	87
\backslash lastbox．	19， 87
\backslash lastkern．	19， 8

Index

\predisplaysize．．．．．．．．．．．．．．．．．19， 126
\langle prefix〉．．．．．38，44，46，47，54，65， 154
\pretolerance．．．．．．．．．．．．．．．．．．．．．19， 126
〈prevdepth〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 126
\prevdepth．．．．．．．．．．．．．．．．．．．．．．．19， 126
〈prevgraf〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 127
\prevgraf ．．．．．．．．．．．．．．．．．．．．．．．．19， 127
－progname ．．．．．．．．．．．．．．．．．．．．．．．．． 23
〈protected〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 127
\protected．．．．．．．．．．．．．．．．．．．．．．．．．18， 127
\pushocplist．．．．．．．．．．．．．．．．．．．．．．18， 127

R

〈radical〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 127
\radical．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 19,128
〈raise〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 128
\raise．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．20， 128
$\langle r e a d\rangle .$. ．128， 129
\read．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．20， 128
〈readline〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 129
\readline ．．．．．．．．．．．．．．．．．．．．．．．．．．．．18， 129
〈relax〉．． 129
\relax．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．20， 129
\relax．． 12
\relpenalty．．．．．．．．．．．．．．．．．．．．．．．20， 129
\removebeforeocplist．．．．．．．．．18， 130
\langle replacement text〉．．29，44，54，60，65， 81，104， 154
repository．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 8
\right．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．20， 130
〈righthyphenmin〉．．．．．．．．．．．．．．．．．．．．．． 130
\righthyphenmin．．．．．．．．．．．．．．．．．．20， 130
\rightskip．．．．．．．．．．．．．．．．．．．．．．．20， 130
〈romannumeral〉．．．．．．．．．．．．．．．．．．．．．．． 131
\romannumeral．．．．．．．．．．．．．．．．．．．．．．20， 131
〈row〉．． 68
〈rows〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 68
〈rule dimension〉．68，69，71，148，151， 153
\langle rule specification〉．．．．．．．．．．．．．．71， 151

S

\savinghyphcodes ．．．．．．．．．．．．．．18， 131
\savingvdiscarts．．．．．．．．18， 131
\savingvdiscarts．．．．．．．．．．．．．．18， 131
\scantokens．．．．．．．．．．．．．．．．．．．．．．18，131
\scriptfont．．．．．．．．．．．．．．．．．．．．．．．．20， 131
\scriptscriptfont．．．．．．．．．．．．．20， 131
〈scriptscriptstyle〉．．．．．．．．．．．．．．．．．．．．．． 132
\scriptscriptstyle．．．．．．．．．．．．20， 132
\scriptspace．．．．．．．．．．．．．．．．．．．．．20，132
〈scriptstyle〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 132
\scriptstyle．．．．．．．．．．．．．．．．．．．．．．．．20， 132
scrollmode ．．．．．．．．．．．．．．．．．．．．．．13， 23
〈scrollmode〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 133
\scrollmode ．．．．．．．．．．．．．．．．．．．20， 133
search．． 25
〈setbox〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 133
\setbox．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 20,133
〈setlanguage〉．．．．．．．．．．．．．．．．．．．．．．．．．．．． 133
\setlanguage ．．．．．．．．．．．．．．．．．．．．．．．．．20， 133
〈sfcode〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 134
\sfcode．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 20,134
〈shipout〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 134
\shipout．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．20， 134
〈show〉
134

\show．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 20,135	
〈showbox＞	
\showboxbreadth．．．．．．．．．．．．．．． 20,135	
\showboxdepth．．．．．．．．．．．．．．．．20， 135	
\showgroups．．．．．．．．．．．．．．．．．．．．．．18， 135 〈showlists〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 136	
\showlists．．．．．．．．．．．．．．．．．．．．20， 136	
\showthe．．．．．．．．．．．．．．．．．．．．．．．20， 136	
\showtok	
〈size．．．〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 62	
\skewchar ．．．．．．．．．．．．．．．．．．．．．．．20， 136	
\skip	， 136
\skipdef．．．．．．．．．．．．．．．．．．．．．．． 20,137	
〈space primitive〉．．．．．．．．．．．．．．．．．．．． 29	
\spacefactor．．．．．．．．．．．．．．．．．．20， 137	
\backslash spacesk	， 137
\langle span〉．．．．．90，101，115，130，137， 144	
〈special〉．．．．．．．．．．．．．．．．．．．．．．．．．．． 138	
\special．．．．．．．．．．．．．．．．．．．．．．．．20， 138	
\splitbotmarks．．．．．．．．．．．．．．．．18， 138	
\splitdiscarts．．．．．．．．．．．．．．．．18， 138	
\splitfirstmark．．．．．．．．．．．．．．． 20,139	
\splitfirstmarks．．．．．．．．．．．．18， 139	
\splitmaxdepth．．．．．．．．．．．．．．．． 20,139	
\splittopskip．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 139〈string〉．．．．．．．．．．．．．．．．．．．．．．．．．． 139	
\string．．．．．．．．．．．．．．．．．．．．．．．．． 20,139	
\tabskip．．．．．．．．．．．．．．．．．．．．．．．． 20,140	
TEX．．．．．．．．．．．．．．．．．．．．．．．．． 5 ，22， 25	
tex．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 17	
－texinputs ．．．．．．．．．．．．．．．．．．．．．．． 24	
texmf．．． 24	
\textdir．．．．．．．．．．．．．．．．．．．．．．．． 18.140	
\textstyle．．．．．．．．．．．．．．．．．．．．．．．20， 140	
\TeXXeTstate．．．．．．．．．．．．．．．．．．． 18,140	
〈the〉．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 141	
\the．．．．．．．．．．．．．．．．．．．．．．．．．．．． 20 ， 141	
\thickmuskip．．．．．．．．．．．．．．．．．． 20 ， 141	
\thinmuskip．．．．．．．．．．．．．．．．．．．20， 141	
\time．．．．．．．．．．．．．．．．．．．．．．．．．．．．．20， 141	
〈token〉．．．29，33，64，90，100，134， 139	
$\left\langle\right.$ token $\left._{1}\right\rangle \ldots .73, ~ 730 ~$	
$\left\langle\right.$ token $\left._{2}\right\rangle \ldots .73, ~ 73, ~ 80 ~$	

＜tokens＞	27，57，84，85， 105	＜valign＞	148
\toks	．20， 141	\valign	20， 148
\backslash toksdef	．．20， 141	\vbadness	20， 148
\tolerance	．．．．．．．．20， 141	＜vbox〉	． 148
\topmark	．20， 141	\vbox．	．20， 149
\topmarks	．18， 142	〈vcenter＞	． 149
\topskip．	．．20， 142	\vcenter	20， 149
\tracingassigns．	．．18， 142	version	．． 24
\tracingcommands	．18，20， 142	－version	24
\tracinggroups	．．18， 142	〈vertical material＞	148， 153
$\backslash t r a c i n g i f s$	．．18， 142	$\langle v f i\rangle$	149
\tracinglostchars	20， 142	\vfi	18， 149
\tracingmacros	．20， 142	$\langle v f i l\rangle$	150
\tracingnesting．	．．．．18， 142	\vfil	20， 150
\tracingonline．	．．20， 143	＜vfill〉	． 150
\tracingoutput	．20， 143	\vfill	20， 150
\tracingpages	．．20， 143	＜vfilneg〉	． 150
\tracingparagraphs	．20， 143	\vfilneg	．20， 150
\tracingrestores	20， 143	\vfuzz	20， 151
\tracingscantokens	．．18， 143	$\backslash \mathrm{voffset}$	20， 151
\tracingstats	．．20， 143	〈vrule〉	151
〈true text＞．	73，75－80	\vrule	20， 151
〈type〉	． 105	\vsize	20， 151
		〈vskip〉	．． 152
U		\vskip．〈vsplit＞	$.20,152$
＜uccode〉	． 143	\vsplit	20， 152
\uccode	．20， 144	$\langle v s s\rangle$	． 152
\uchyph	．20， 144	\vss	20， 152
\underline	．20， 144	$\langle v t o p\rangle$	． 153
\unexpanded	．18， 144	\vtop	20， 153
＜unhbox〉．	．．．． 144		
\unhbox．．	$\text { 20, } 144$	W	
＜unhcopy〉			
\unhcopy	．．20， 145		
Unix ．	．15， 24		
〈unkern〉	．．． 145		
\unkern．	．．20， 145	\widowpenalties	
\unless．	． 18,145	\widowpenalties	18， 153
\unnaturaldir	．18， 146		
〈unpenalty〉	．．．． 146		$\begin{aligned} & 15,24 \\ & 20,154 \end{aligned}$
\unpenalty	．20， 146	WWW．．．．．	
〈unskip〉．．．．．	．．．．． 146	WWW．．．．．	
\unskip．	．．20， 146		
〈unvbox〉	．．．．． 146	X	
\unvbox．	．20， 146		
〈unvcopy〉	．．．． 147	$\langle x d e f\rangle$	154
\unvcopy．	．20， 147	\xdef	20， 154
〈uppercase〉	．．．．． 147	〈xleaders〉	． 155
$\backslash u p p e r c a s e$	．20， 147	$\backslash x l e a d e r s$	20， 155
		\xspaceskip	20， 155
V			
〈vadjust〉 147		Y	
\backslash vadjust．	．20， 147	\year	．20， 155

[^0]: To be completed.

[^1]: $\backslash p d f m o v e c h a r s$ is a count register. The primitive $\backslash p d f m o v e c h a r s$ is defined in the set

